University of Hertfordshire

Computer Science Masters Project

Assignment Title: FPR - Final Project Report
DeliveryGo - Delivery Driver Management System

Module Title:
Computer Science Masters Project

Module Code:
7COM1039

Submitted By:
Nazmul Hossain

Supervisor: Imran Khan 9
i.khan9@herts.ac.uk

Course: MSc Computer Science
SID: 23094184



Table of Contents

MSc Final Project DEclQration ...............ceeeeeeeeeeeeeneeeenseennsereesesenssssssssssessssssssssssessassssnsssssnsessnns 2
[T To [T [t 1 o T R 3
Problem Statement ... e s a e 4
EXIStING SOIULIONS ..c.c.uiiiiiiiiiiiic ittt et e e s e ss e s e ras s s s e nas s s senassssaensssssesnsssssesasssssennssssnensssssnennns 5
AiMS & ODJOCHIVES.......ccuceeeniieeriiieiiiiiiiriiiieiiiiiirisistnsistnssessasissessssnsssssssersssessnssssssssssssessassssnssssns 6
TR RVZ=K3x [0 (o [ Lo 7
L= Totn Lot B TSR V=X aF==1 a T ] O 7
INVeStiZatioN QUESTION ....cuuiiieiiiiiiiiiiieiiieecieeerreestreierensesensesenssssnsssssassssnsssensssenssssnnssssnssssnsensnssnes 8
Literature Review (Secondary RESEAICR)................eeeeeeneeereeneeeereneeeeeennseesennssessssnssssssnsssesssnnes 10
Responsible Technology - Ethical/Legal/Professional and Social ISSUES.............cccceereeererereeann. 11
Timeline & BUAQEeL ............c..eeeeneeeenereeniereneeeeeereeneeenssessesessessssnssessssssssssssnsssssassssnssssnssssnassssnne 14
RESOUICES REQUITEU. .........cceuuireeriiieeiienniiensiiiniiiseniiienissnsisssssessnsessssssssasesssssssssssssnssssnssssnsnsnes 16
Project Planning and Development - Project Methods .................ccvveeuriirreneriirnvnnisssennsssnnnnans 17
Project Management (Agile MethodolOogy).......cccveueiiiiieriiiiiereirerreerereecereree e e s e nase s e rnnsesesnnsasnens 17
TOOIS & TEChNOIOGIES.....cceeciiiiecciieeecer et e rrreee e s reea e s e rnnseseenssesseensssssesnsssssesnnseseennssennennnnans 18
Requirements Gathering ...ttt re s rn s ss e e seasesensessnssssnnsssnassnennes 21
Information Archit@CtUIe.........ueiiiiiiiiiiii s saaeseas 25
BV =T 4 (TN T - o PN 26
ER DIagram ... iceuiieeiiieeiiieciinniiinniitnsisiessieeserenssssnssssnssssnsssssssssenssssnssssnssssssssssnsssenssssnssssnsssssnsssnnnss 27
React Native ApPliCation ....cccuciiiiiiiiiiiiiiiiiiiiieiiiieirie s tesassessesasssssesssssssesssssssenssssssensssssaes 28
Database IMpPlementation .........cccciieiiieniiiieieieierteeieieereererearerenseesaseernseessssersnsesensessnssesassssnssenannes 29
Apple Developer Account and Google Play Console..........cccciireeeiiiiieeiiiieeecirreneeesreneseesnenesesseenens 31
Twilio SMS Authentication .......cccciiiiiiiiiiiiiiiiiiiiiiiiri e srsassssrsssssssesssssssesssssssssnsssns 31
Expo EAS Build and ContinUOUS DeliVery.......cccceiiiuuiiiiiniieiiiniiiiinieiiniimmiimimmssessee 32
Additional External INtegrations .......cccciiiieeiiiiiieciiiiieiiiireeicsrreeeesreeeeesrenessssenessssrennsssssenssssssanens 32
Testing & QUAlItY ASSUIANCE ...cc..iiieeeeriiieeierieeneiertennseeseensseereenssseseenssssseenssessesnsssssesnssessesnssassennnnens 33
Deployment 0 i0S StOre....civuiiiiiiiiiiiieiiiiiereierteerrneerenereasesensessasestnssssnsssssnsssensessnssssnssssnasssnnnes 34
DeliveryGo Navigation WOIKFIOW .............eeeeeeeeeeeeeeieeeeereenereesierneseeressessssessasessnssssssssssassssnnnns 34
Onboarding & RegiStratioN............ceiieeuiiiiieiiiieieierenesesreneneerenaseeerensssssennsssssennsssssennssssnennssssnennns 35
Dashboard & Delivery Management ..........cccciveiiiiiiiiiiieiiiiiiieeierteirineieseesessnsesensessnssssssssssnssssnnes 35
Reporting & Profile Management .......cccceiiiiiiuiiiiiiniiiiiiiiiiiiiiineienmssiesmsesiesmssssenssssssessssssses 35



Primary Research — MethodolOgy ............ccccevveuuriiineeuniinineniisnsenssisssenssisssssssssssssssssssssssssennes 36

Manual Process SIMulation — The Old Way......cccciveiiiiniiieeriienieieeereenirrnseeresersaserensessassesasessnssensnnes 37
DeliveryGo App Simulation — The NeW Way ........ccuuciiiiieeiieiiiencieiennneesrennnessennssessennsssssennssesssnnsssnens 40
Results — Comparative framework (time, cost, errors, efficiency) ........cccceeeeeevrrvvvvevnrcisernnneee. 45
COMPAratiVE MELIICS ..euuieeiiiieeiieeireniieerecraiereeteeernestnsernssenssenssassrassrasesnsesnssssssasesnsernssssssssssasssnssnns 46
TiME COMPATISON ..ivuiiineiiieeiiiteieienitiniitnessiasisteeseressstenssssnsssssssssnssssasssssssssenssssnssssnsssanssssnssssnesssnnsss 48
COSE COMPATISON ..c.uiieniiiiiiiiieiiieniiteerteittnneetnesetenstreaserenssssassssnssssesssssnsssensessnssssnssssnsssssnssssnsassnsanes 49
L1 o Tl olo T 4T o - T4 T o T 50
Efficiency and other factors ........cceeiiiieiiiiiccrrrrc et eras e s s e s e s s e na s seenassssesnssnsnens 51
SUMIMIAIY tuiittiiuiiiuiituiieitnstnsrasteesteestasstessressesstesstassrsssrsssssssssstssstssstsssssssssstasssasssssssnssssssasssnsssnsssnss 52
Discussion of Findings and CONCIUSION .............cceuuerveeeriiiienniiiriensiisisensiissnseisssssssisssesssssssennes 53
Accuracy of Wage Calculations ........ccceciiiieeiiiiieeiiiiiiiirreecsreeeecsrenneessenesssssenesssssenesssssenssssssanens 53
Time Savings in AdMINIStrative Tasks .....cc.ccciiieeiiiiiiciiirrrccirre e rrrneee s rrnne s e e snnsessesnssessennnnans 53
Locating Delivery AddresSes ......ccciiieciiieniiiieiiiieiiiniiinieiensiienerenessnsisrnssssssssssnsssenssssnssssssssssassssnnes 54
Broader IMPliCatioNS........ciiiieiiiiiiiiiiiiciiiie e trrasseterasestenasssstenasssssenssssssennssssesnsssssssnnsssnans 54
Future Recommendations & Risk Mitigation...............ccceuveieerirensirensisivesissnsisinssssasossnssssnssones 55
Future Recommendations .......cccivuuiiiiiiiniiiiiiiiiiiiiiiniiiieiiseiesmesiesmsestessssesssssessssssses 55
L Q1Y L == n Lo T o RN 56
(s o ol (7 o N 57
REJEIONCES.....cccvuueirivreniiriinnniiiiiriiiiisesiissssasisssesesississsssssssssssssssssssssssssssssssnsssssssssssssssssssssssnnes 58
APPCNAICES c..eeueeeeeeeeeeeeeeeeieeeieeieetieeerererreesreasseeseeesesssssssseesseessessssnssssssenssessssssssssssnsssnssennsens 62

MSc Final Project Declaration

This report is submitted in partial fulfilment of the requirements for the degree of Master of
Science in Computer Science at the University of Hertfordshire (UH).

It is my own work except where indicated in the report.
| did not use human participants in my MSc Project.

| hereby give permission for the report to be made available on the University of Hertfordshire
website provided the source is acknowledged.



Project Title

DeliveryGo — Takeaway Delivery Driver Management System

Apple Store —
https://apps.apple.com/us/app/deliverygo-delivery-driver/id6751056501 ?platform=iphone

Website: www.deliverygo.co.uk

Introduction

In today’s fast-paced food industry, takeaway restaurants rely heavily on delivery drivers to
ensure timely service and customer satisfaction. While most restaurants already use till systems
and electronic point-of-sale (ePOS) systems to manage their orders, a major gap still exists in
managing their delivery operations. The management of drivers—covering work hours, shift
allocation, delivery tracking, mileage calculation, wages, and performance reporting—is still
done manually in many restaurants. Owners often rely on pen and paper to record delivery
times, addresses, and costs, which not only consumes valuable time but also introduces errors
and inconsistencies in calculations.

The manual process involves multiple repetitive steps each day. For instance, restaurant owners
must first prepare paper templates to record start and end times for drivers, delivery postcodes,
and order details. Every new order requires additional manual entries, from noting the delivery
address to writing the start and end time of the journey. Drivers must also enter delivery
addresses manually into navigation apps, often double-checking to avoid mistakes with similar-
sounding street names. Contacting customers adds further delays, as drivers need to copy
phone numbers from receipts into their phones. At the end of the day, all receipts are collected,
and wages or petrol costs are calculated manually, often leading to inaccurate payments
because costs are not based on actual mileage but on rough estimates. For example, a local
delivery may be marked as £0.70 even if the distance exceeded one mile, or two deliveries to
the same city may vary greatly in distance but are paid the same. This approach results in
wasted time, miscalculations, and limited transparency in driver performance.

To address these challenges, the proposed solution is DeliveryGo, a software system designed
specifically for takeaway restaurant owners to manage their delivery drivers more effectively.
The system automates the entire process, from shift management to delivery tracking, reducing
dependency on manual entries and eliminating calculation errors. Drivers can start their shifts
by simply pressing a button in the app, and each delivery can be logged automatically by taking
a photo of the receipt. The app extracts key information such as the delivery address, phone
number, and verification code, and records it in the database. With one tap, drivers can access
navigation, call customers directly, or update delivery status.


https://apps.apple.com/us/app/deliverygo-delivery-driver/id6751056501?platform=iphone
http://www.deliverygo.co.uk/

For restaurant owners, DeliveryGo provides a centralized dashboard that displays driver activity,
live delivery status, wages, petrol costs, and performance metrics. Unlike the manual method,
where calculations are inconsistent and time-consuming, the app ensures accuracy by basing
wages and petrol fees on actual mileage and time worked. Reports can be generated daily,
weekly, or monthly, offering a clear overview of delivery operations and driver efficiency.
Features such as “authorize a driver to work,” right-to-work verification, performance
monitoring, and detailed expense tracking further enhance accountability and compliance.

The significance of this system lies in its ability to simulate all tasks currently done manually, but
in a faster, more reliable, and cost-effective way. By saving minutes on every delivery, the
accumulated time savings over a day, week, or month become substantial. Additionally,
accurate wage and mileage calculations build trust between drivers and restaurant owners,
while real-time tracking ensures smoother communication and fewer delays. Ultimately,
DeliveryGo transforms delivery management from a burdensome manual process into a
streamlined digital workflow, enabling restaurants to focus on growing their business and
serving their customers more effectively.

Problem Statement

Takeaway restaurants increasingly depend on multiple delivery drivers to meet growing
customer demands. While they often employ till and ePOS systems to manage orders, they lack
a dedicated platform to manage delivery operations effectively. As a result, critical tasks such as
wage calculation, shift scheduling, delivery tracking, and performance monitoring are still
handled manually through pen-and-paper records or basic spreadsheets. This outdated
approach introduces inefficiencies, financial risks, and communication challenges that affect
both business owners and drivers.

Wage Calculation: Weekly wages are calculated manually based on estimated hours, mileage,
and deliveries, which is both time-consuming and prone to errors.

Shift Management: There is no automated process to record start and finish times or authorize
driver shifts, increasing the risk of unauthorized work or missed shifts.

Delivery Analytics: Restaurants cannot track key performance indicators such as average
delivery times, mileage costs, or overall driver efficiency.

Real-Time Monitoring: Owners lack tools to view live driver locations, delivery status, or
optimized routes, leading to delays in customer updates and reduced accountability.

Expense Tracking: Petrol and delivery-related costs are logged manually, often leading to
inaccurate expense reporting and profit calculation.



Payment Accuracy: Errors in per-mile calculations and wage distribution frequently cause
disputes between drivers and owners.

Communication Gaps: Drivers must manually copy customer phone numbers, creating delays in
resolving delivery issues.

Route Inefficiency: No tools exist to optimize routes or automatically identify addresses (e.g.,
through photo recognition), resulting in wasted time and higher fuel costs.

Lack of Transparency: Restaurant owners cannot generate detailed reports on driver
performance, delivery statistics, or wage breakdowns, limiting visibility and accountability.

Existing Solutions

Currently, most takeaway restaurants use till systems and ePOS (Electronic Point of Sale)
software to manage online and in-house orders, but these systems generally lack features for
managing delivery drivers. Some restaurants use third-party delivery platforms like Uber Eats,
Deliveroo, or Just Eat, which provide basic driver assignment and tracking features. However,
these platforms primarily focus on their own network of drivers and do not cater to restaurants
managing their own in-house delivery staff.

Other businesses attempt to fill the gap by using generic tools like Excel spreadsheets, Google
Sheets, or manual notebooks to record driver hours, calculate wages, and track deliveries. A few
small-scale workforce management apps exist, but they are often not tailored for the unique
needs of takeaway restaurants, and most do not offer integration with existing ePOS systems.

Moreover, existing delivery tracking apps focus more on customer-side order tracking and lack
features like shift scheduling, time tracking, wage calculation, performance monitoring, and
real-time driver-to-owner communication.

The lack of a specialized, affordable, and integrated solution leaves takeaway restaurant owners
struggling with inefficiency, inaccuracy, and unnecessary administrative burden.



Aims & Objectives

The aim of this project is to investigate the inefficiencies and challenges of manual delivery
driver management in the takeaway restaurant sector, and to design, implement, and evaluate
an automated solution — DeliveryGo — that addresses these pain points. The study seeks to
demonstrate how automation can reduce administrative workload, improve wage and mileage
accuracy, enhance operational efficiency, and provide transparency through integrated tracking,
communication, and performance monitoring.

To achieve this aim, the following objectives were set:

Analyze operational challenges of manual delivery processes
Examine how traditional paper-based methods (e.g., handwritten logs, manual wage
calculation, and fragmented communication) impact efficiency, accuracy, and fairness.

Review existing industry solutions and limitations
Critically assess current delivery management and dispatch tools, identifying gaps in their
suitability for small and medium-sized takeaway businesses.

Define system requirements
Establish clear functional and non-functional requirements for an effective solution, focusing on
automation, real-time navigation, communication, accurate wage calculation, and scalability.

Design the DeliveryGo framework

Create a conceptual model and system architecture that directly addresses the identified pain
points, emphasizing features such as scheduling, tracking, reporting, and automated
wage/mileage calculation.

Develop and test a working prototype
Build a prototype of the DeliveryGo system to simulate core functionalities, validating its
effectiveness through comparative analysis with the manual process.

Evaluate outcomes against research questions

Compare the manual and automated approaches in terms of time savings, error reduction,
wage accuracy, and efficiency, and critically discuss the extent to which the system meets the
defined research question.



Investigation

Practical Investigation

The practical investigation was structured to evaluate the limitations of the traditional manual
delivery management process and the improvements offered by the DeliveryGo application.
This was achieved through a simulation that modelled both workflows using a controlled
dataset of 30 customer orders. The simulation aimed to reflect realistic conditions commonly
experienced by small takeaway restaurants in the UK, where resources are limited, and
managers frequently rely on paper records, phone calls, and manual wage calculations.

The manual process was reconstructed first. This involved preparing daily paper templates,
manually entering each order, cross-checking delivery addresses, and contacting customers by
phone. Drivers were required to record fuel receipts and submit them to the restaurant owner
at the end of each shift. Wages were then calculated using postcode categories rather than
precise mileage, reflecting the legacy practices widely reported in restaurant operations
(Anderson & Schwieterman, 2018). Time taken for each step was recorded to quantify
inefficiencies, while qualitative notes captured error risks such as miscopied phone numbers or
incorrect mileage estimates.

Subsequently, the DeliveryGo prototype was simulated with the same dataset. Orders were
entered directly into the application, which automatically generated delivery records, tracked
mileage via integrated GPS, and calculated wages based on actual distance travelled. This
eliminated the need for paper logs, manual phone dialing, and retrospective reconciliation of
receipts. Shift management was handled through digital check-in/check-out features, reducing
administrative overhead. Metrics such as total preparation time, order entry time, and payment
calculation time were collected, alongside observations on error reduction and communication
efficiency.

Both scenarios were compared across time, cost, errors, and efficiency, providing a systematic
framework for analysis. Time was measured in minutes required to complete routine tasks, cost
in terms of driver compensation per delivery, errors in the likelihood of miscommunication or
miscalculation, and efficiency as the ability to handle the delivery workload with minimal delays.
This comparative design ensured that findings directly addressed the central research question
of whether a dedicated digital system could significantly outperform the manual approach in
delivery management.

This mixed quantitative—qualitative simulation approach is consistent with best practices in
computer science investigation projects, where controlled modelling and comparative analysis
are often used to demonstrate the practical implications of digital innovation (Oates, 2006). By
replicating both workflows under equivalent conditions, the investigation produced robust and
replicable findings suitable for academic evaluation.



Investigation Question
The primary research question for this project is:

“To what extent can a delivery driver management system improve operational efficiency,
accuracy in wage and mileage-based calculations, and reduce time spent on administrative tasks
compared to the manual methods used by takeaway restaurants?”

To enable a focused and measurable investigation, the research question is operationalized into
the following sub-questions, each associated with an evaluation metric:

1. How does the system improve the accuracy of wage calculations compared to manual
methods?

Metric: Number of wage calculation errors before and after system implementation.

2. How much time is saved on administrative tasks such as wage processing, shift
tracking, and expense logging?

Metric: Average time spent per week on administrative work (manual vs automated).

3. How does the system impact the ease and speed of locating delivery addresses for
drivers?

Metric: Time taken to find an address manually vs using automatic address detection or
route guidance.

This question was developed in response to consistent challenges reported in the literature on
manual delivery management. Small restaurants frequently rely on paper notes, spreadsheets,
or informal messaging systems to coordinate shifts and deliveries, which are time-intensive and
error-prone (Harri, 2022). Manual wage computation based on postcode categories often
results in under- or over-payment of drivers, while the absence of automated mileage tracking
limits fairness and accountability (Anderson & Schwieterman, 2018). Furthermore, inefficiencies
in locating delivery addresses and communicating with customers contribute to avoidable
delays and reduced service quality (Samsara, 2023).

These sub-questions ensure that the investigation remains evidence-driven and replicable,
enabling direct comparison between the manual simulation and the DeliveryGo application.



Rationale for the Investigation

The rationale for pursuing this investigation is twofold. First, there is an academic gap: while
digital dispatching and automation have been widely studied in large-scale logistics operations
(Track-POD, 2023; Onetime 360, 2023), little research has examined their application in small,
resource-constrained food businesses. Second, there is a practical gap: many UKS takeaway
restaurants still rely on fragmented, outdated methods that cannot scale, lack compliance
features, and increase the risk of wage disputes or miscommunication (Brown et al., 2019).

By assessing whether an all-in-one, purpose-built application such as DeliveryGo can streamline
wage calculation, optimize route management, and simplify driver administration, this
investigation aims to determine whether automation can generate meaningful time and cost
savings while improving fairness and accuracy. Addressing this question will therefore
contribute to both academic understanding and practical solutions for efficiency in the
takeaway industry.

Investigation Level

The investigation for this project will be carried out through a practical and test-based
approach, focusing on quantitative evaluation using controlled scenarios. No primary data will
be collected from human participants, and therefore, ethics approval is not required.

The system will be evaluated by simulating real-world delivery operations, such as wage
calculation, delivery tracking, mileage logging, and address detection. Performance will be
measured by comparing the automated system’s output against results generated from
traditional manual processes. Key evaluation criteria will include time saved, accuracy of
calculations, and delivery coordination efficiency.

This approach ensures that the investigation remains focused on measurable outcomes, while
also reflecting realistic use cases without involving live user testing.



Literature Review (Secondary Research)

Background Research

Delivery driver management in small takeaway restaurants remains a largely manual and
fragmented process. The literature highlights several recurring challenges, particularly in
scheduling, delivery tracking, wage calculation, and communication within delivery teams. This
section reviews existing research and identifies gaps that the proposed DeliveryGo system aims
to address.

Manual Workforce Management Challenges in Takeaway Delivery

Small restaurants often depend on pen-and-paper records or basic spreadsheets for tracking
driver shifts, hours worked, and deliveries completed (Anderson & Schwieterman, 2018). This
manual approach is not only inefficient but also prone to wage calculation errors and poor shift
coordination (Brown et al., 2019). Managers also struggle with verifying attendance and
managing workloads, especially during peak times (Miller & Chen, 2020). These methods lack
the scalability and accuracy needed in today’s fast-paced delivery environment.

DeliveryGo responds to this by automating time tracking, start/finish times, and integrating
hourly rates and per-mile calculations for accurate wage processing.

Automation and Digital Solutions for Driver Management

Automated systems have been proven to improve scheduling accuracy, minimize payroll errors,
and optimize resource allocation in small businesses (Willcocks et al., 2015). Robotic Process
Automation (RPA) is increasingly being used for tasks such as wage computation, compliance
checks, and shift planning (Lacity & Willcocks, 2018). However, the adoption rate among
takeaway restaurants remains low due to cost, complexity, and lack of tailored solutions (Smith
& Lee, 2021).

DeliveryGo addresses these barriers by offering an affordable, tailored solution with built-in
automation for tasks like driver authorization, right-to-work checks, and due payment
tracking.

10



Real-Time Tracking and Delivery Optimization

GPS tracking technology improves delivery operations by enabling real-time route optimization
and delivery status updates (Kumar & Zhao, 2020). Live driver location visibility has been linked
to increased customer satisfaction and driver accountability (Park & Lee, 2019). Yet, many
restaurants face integration issues between delivery tracking tools and their internal systems,
leading to data silos and operational delays (Forbes Technology Council, 2023).

DeliveryGo’s real-time tracking, address recognition from photos, route optimization, and
delivery status features help bridge this integration gap.

Identified Research Gap

While ePOS systems and tracking apps exist, they often fail to provide a comprehensive solution
that includes wage automation, driver performance analytics, expense logging (petrol, daily
delivery costs), customer contact integration, and legal compliance features. These are critical
for small businesses looking to reduce administrative load and improve efficiency.

DeliveryGo is designed to close this gap by offering an all-in-one system tailored specifically
for takeaway delivery operations—combining scheduling, tracking, wage management, driver
authorization, and performance monitoring under one platform.

Responsible Technology- Ethical/Legal/Professional and
Social Issues

The system is designed to increase transparency and accountability in driver
management while protecting the rights and dignity of all users. Ethical issues addressed
include:

Privacy and Consent: DeliveryGo ensures that drivers’ personal information and location
data are only collected and used with informed consent. Location tracking is only active
during active shifts and is transparently communicated to users.

Fair Treatment: Wage calculations are automated based on pre-defined hourly rates and
mileage, reducing the risk of human error or bias. The system helps enforce fair and
transparent payment practices.

Right to Work Verification: While automating the verification of legal work eligibility, the
system avoids discriminatory practices by treating all users equally, relying solely on

documentation validation.

11



Ethical Considerations

A key ethical concern is the responsible collection and use of personal data, especially real-
time location and wage information. All data collection must be transparent, and consent based.
Drivers will be informed of what data is being collected, why it is needed, and how it will be
used. Location tracking, for example, will only be active during scheduled delivery hours and
clearly indicated to the user.

Data minimization will be applied to collect only the information necessary for system
functionality, reducing potential risks of misuse. Additionally, automated wage calculation
introduces ethical responsibility to ensure transparency and accuracy, avoiding disputes or
potential underpayment.

The system must also be designed to avoid any discriminatory or biased practices, such as
improper handling of driver verification or right-to-work checks. Ethical design involves treating
all users equally regardless of nationality, background, or language, ensuring fair access and use.

Legal Considerations
The project adheres to relevant data protection and employment laws, particularly:

General Data Protection Regulation (GDPR): All personal data collected (e.g., names,
addresses, shift logs) is processed in accordance with GDPR principles—lawfulness,
transparency, purpose limitation, data minimization, and security. Users have the right to
access, correct, or delete their data.

Employment Law Compliance: Features such as right-to-work checks and wage
transparency support legal compliance with UK labor regulations.

Data Storage & Security: Secure storage practices, including encryption, and HTTPS
communication, are implemented to protect sensitive information from unauthorized
access.

12



Professional Standards

The system is developed following professional guidelines set by the British Computer
Society (BCS) and ACM Code of Ethics, ensuring:

Integrity and Competence: The project avoids overpromising technical capabilities and
maintains accuracy in all representations.

Accountability: Errors or system limitations are logged, documented, and communicated.
Updates and bug fixes follow a structured CI/CD process to ensure responsible release
management.

Maintainability and Documentation: Full system documentation is maintained to ensure
knowledge transfer, user training, and future auditing.

Social Impact

DeliveryGo has the potential to positively impact small takeaway businesses by reducing
operational stress and improving financial accuracy and transparency. Social considerations
include:

Empowering Small Businesses: The platform supports small restaurants often overlooked by
large delivery platforms, allowing them to better manage their workforce.

Worker Satisfaction: By automating wage tracking and minimizing disputes, the system
promotes better working relationships and fairness for drivers.

Digital Inclusion: A simple and intuitive mobile interface ensures the system is accessible to
users with limited technical skills or experience.

13



Timeline & Budget

Research/Reporting

Gantt Chart: Timeline & Budget (Updated)

Primary Research -
Deployment
Documentation
Optimization -
Testing
Security
UIUXx
Database
Architecture
Requirements Analysis
Investigation
Business Planning
Weék 1 Weék 2 Week 3 Weék 4 We:ak 5 Weék 6 Week 7 Welek B8 Weék 9 Week 10 Weelk 11 Wee‘k 12
Timeline
Figure 1 - Work Timeline Chart
Week Category Activities / Deliverables
Week 1 @ Business Planning Define product vision, mission, goals, target
audience, and market analysis
Requirements Analysis Draft product backlog, gather user stories,
prioritize features
q@ Legal & Compliance Explore license options (open source), review
Analysis GDPR, and draft terms of service
Week 2 Requirements Analysis Refine backlog, define acceptance criteria
Software Architecture Finalize tech stack, system modules, data flow
Design diagrams
ﬁ Database Design ER diagrams, relationships, schema design for
PostgreSQL/Supabase
Week 3 @ Ul/UX & Branding Design Wireframes, color palette, font selection, initial
screens via Figma

14



[l Software Diagrams

Class diagrams, architectural structure,
sequence diagrams

Week 4 @ Finalize Ul Mobile responsiveness, accessibility checks,
feedback review
Mobile App Dev —Sprint 1 | Implement Reach Native dashboard layout,
login/auth Ul, basic routing
@ Security Planning Threat model, access roles (admin/user), data
protection approach
Week 5 @ Backend Dev — Sprint 1 Setup Node.js and Supabase Edge Function,
auth APls, SMS Auth, workspace/user models,
connect to database
Frontend Dev — Sprint 2 Feature planning board (Kanban-style),
navigation components
€3 Database Implementation
Create tables, indexes, test data
Week 6 @ Backend Dev — Sprint 2 Feature CRUD, roadmap logic, checklist
endpoints
@ Security Implementation Middleware, input validation, cookie/session
handling
Week 7 % Performance Optimization | Lazy loading, dynamic imports, API caching
@ Backend — Sprint 3 Notifications, status updates, markdown
rendering
@, Testing — Sprint 1 Unit testing backend APIs, test frontend flows
Week 8 [ﬂ, Testing — Sprint 2 Apple Store TestFlight Testing, Google Console
Testing
ﬂ Deployment Prep Apple Store and Google Play Store
Week 9 D Documentation Draft API docs, system overview, tech stack
rationale, feature matrix
@ Final Ul Review Polish design, mobile testing, brand assets
export
Week 10 D Final Documentation README, user guide, license, and contribution

guides

15




D Primary research

@ Security Audit

User experiments, data collection

Permissions, password rules, access logging,
vulnerability scan

@ Report & Viva Preparation

Week 11 & Final Deployment Launch app, bind domain, SSL setup, database
@ Data analysis Statistical comparison new vs old system
Final Agile Review Address supervisor feedback, patch issues,
version lock
Week 12 f User Testing + Feedback Internal/external user testing, analytics

integration
Finalize report, write conclusion, make

presentation slides, submit GitHub repo

Figure 2 - Work Timeline Details Table

Resources Required

To successfully complete this project, the following technical and non-technical resources will be

essential:
Category Resources/Tools
Google Play Store Google Developer Account (£79 Paid)
Apple Store Apple Developer Account (£25 Paid)

Distance Matrix API

Google Distance Matrix API

Character Recognition - OCR

Google Vision API, ChatGPT API

SMS Authentication

Twilio SMS Auth and OTP System

Development Tools

VS Code, Node.js/Next.js, PostgreSQL, ORM

Frontend Framework

Next.js, React Native, Tailwind CSS, Framer Motion

Ul/Design

Figma (for wireframes and mockups)

Database

PostgreSQL Supabase

Version Control

Git + GitHub (private repository)

Deployment

Vercel (Frontend), React Native, Supabase Edge Functions

APl Documentation

Swagger, Postman

Security Tools

HTTPS, CORS configurations

Testing Tools

Vitest(unit testing), Playwright (end-to-end testing)

Android & 10S Platform

React Native for Cross Platform Development

DevOps Tools

Expo, ESA Build, Docker, GitHub Actions (CI/CD), DotENV,

Figure 3 - Resources Required Table

16




Project Planning and Development- Project Methods

This section outlines the systematic approach undertaken in the planning, design, development,
and evaluation of the DeliveryGo.

Project Management (Agile Methodology)

The project was managed using an Agile methodology, which was chosen because of its
flexibility, iterative structure, and suitability for software development projects where
requirements evolve over time. Unlike traditional waterfall approaches that rely on rigid
sequential phases, Agile emphasizes incremental progress, adaptability, and stakeholder
feedback (Beck et al., 2001). This methodology aligned well with the DeliveryGo project, where
both technical implementation and evaluative simulations required continuous refinement.

DeliveryGo ¢ & Private v

Figure 4 - Middle of the Project - Trello Agile Dashboard

17



Figure 5 - End of the project - Trello Agile Dashboard

Tools & Technologies

The development and evaluation of the DeliveryGo application required a combination of
modern development frameworks, cloud-based services, and open-source libraries. The
selection of these tools was guided by criteria of scalability, accessibility, and alignment with the
project’s objective of building a lightweight yet robust delivery driver management system for
small takeaway businesses.

Visual Studio Code (VS Code):

The primary integrated development environment (IDE) was Visual Studio Code, chosen for its
extensive plugin ecosystem, debugging capabilities, and seamless integration with modern
JavaScript and TypeScript workflows.

React Native (Expo Framework):

The mobile application was developed using React Native, a cross-platform framework that
enables the creation of native iOS and Android applications from a single codebase. The Expo
framework was used to streamline the development process, providing integrated build tools,
testing environments, and simplified deployment pipelines. React Native and Expo were chosen
for their ability to accelerate prototyping and ensure broad accessibility without requiring
multiple native development teams (Facebook Open Source, 2025; Expo, 2025).

18



Git & GitHub:

Version control was managed using Git, with GitHub serving as the central repository. In
addition to collaborative code management, GitHub was leveraged for issue tracking, pull
requests, and continuous integration/continuous deployment (CI/CD) pipelines through GitHub
Actions, ensuring disciplined and auditable development cycles.

Supabase (with PostgreSQL Backend):

Supabase was utilized as the backend platform, offering real-time database functionality,
authentication, and APl generation. It is built on top of PostgreSQL, an established relational
database management system known for its robustness, scalability, and strong support for
transactional workloads. Supabase’s integration with PostgreSQL allowed DeliveryGo to manage
user profiles, shifts, deliveries, and connection data efficiently, while its serverless infrastructure
reduced the need for extensive backend configuration (Supabase, 2025; PostgreSQL Global
Development Group, 2025).

Zustand (State Management):

For client-side state management, Zustand was implemented as a lightweight and efficient
solution to handle user sessions, delivery records, and other shared application states. Zustand’s
minimalistic APl reduced complexity compared to alternatives such as Redux, making it a
suitable choice for rapid development and scalability (Zustand, 2025).

Google Maps Platform (GPS & Navigation Services):

The Google Maps APl was integrated to provide real-time mapping, navigation, and mileage
tracking. This enabled precise calculation of delivery distances and times, supporting the
project’s objective of improving the accuracy of wage and mileage-based calculations. By
leveraging geolocation services, DeliveryGo was able to replace error-prone manual estimations
with objective, verifiable data (Google Developers, 2025).

Google OCR (Optical Character Recognition):

Google Vision OCR was employed for the extraction of address details from receipts and other
textual inputs, reducing manual data entry errors. The integration of OCR technology
streamlined the process of managing delivery orders, aligning with the aim of minimizing
administrative burden (Google Vision OCR, 2025).

Deployment Platforms (Vercel):

For frontend web deployment and scalability, DeliveryGo utilized modern cloud-hosting
solutions such as Vercel. These platforms provided continuous integration pipelines, automated
builds, and global content delivery networks (CDNs), ensuring that the application could be
reliably hosted, updated, and scaled in line with demand (Vercel, 2025; Netlify, 2025).

PostgreSQL:
Serving as the relational database, PostgreSQL provided reliability and transactional integrity for
managing structured data such as delivery logs, driver records, payments, and connections.

19



Next.js (React Framework):

Next.js was selected for building performant and search engine—optimized web interfaces,
offering both server-side rendering (SSR) and static site generation (SSG). These capabilities
ensured faster load times and improved accessibility for restaurant-facing dashboards.

React.js: React formed the foundation of the component-based architecture, enabling the
development of reusable Ul elements and efficient state management. Its widespread adoption
and strong community support reduced technical risk and facilitated faster problem resolution.

Tailwind CSS: For styling, Tailwind CSS provided a utility-first approach that accelerated
responsive design and guaranteed accessibility-compliant interfaces. Its modularity reduced
development overhead compared to traditional CSS frameworks.

React Native: Enables development of native Android and iOS applications from a shared
codebase. Offers smooth integration with mobile-specific APIs like GPS, camera (for address via
photo), push notifications, and telephony (call customer button).

Expo / React Native CLI: Used for building, testing, and deploying mobile applications.

Node.js: Where server-side logic was required, Node.js provided a performant, event-driven
runtime. Its compatibility with Supabase APIs and JavaScript-based stack supported end-to-end
consistency across the system.

Figma: The application’s user interface and user experience were prototyped using Figma.
Collaborative features enabled iterative refinement and stakeholder feedback prior to
implementation.

Drawsql.app: Database architecture and system entity-relationship (ER) diagrams were
designed using DrawSQL, ensuring clarity in schema design and alignment with relational data
modelling principles.

20



Requirements Gathering

Requirements gathering is a critical phase in software engineering, forming the foundation upon
which system design and implementation are based. As the DeliveryGo project could not involve
real-world participants due to ethical and practical constraints, the requirements were elicited
through scenario-based simulations and persona-driven assumptions. This method is recognized
as a valid approach for exploratory projects where direct user access is not feasible
(Sommerville, 2016).

Simulated Scenario: To approximate realistic requirements, a representative scenario was
constructed:

User Story 1 — Automatic Address Recognition
As a user, | want to get the address automatically, so | don't have to type it manually.

Purpose:

This story reflects the need for faster and more accurate address entry, especially when delivery
instructions are received via messaging apps or images. This feature will utilize image
recognition or location metadata to extract addresses directly from photos, reducing manual
entry errors and saving time.

User Story 2 — Automated Wage and Expense Calculation

As a business owner, | want to calculate wages and delivery expenses automatically, so | don't
have to calculate it manually with pen and paper.

Purpose:

This story addresses the administrative burden faced by business owners. By automating wage
calculations based on hourly rates, delivery counts, mileage, and petrol expenses, DeliveryGo
eliminates errors and saves significant time. This also ensures transparency and consistency in
payments.

21



Functional Requirements

The functional requirements outline the core capabilities that the DeliveryGo system must offer
to support takeaway restaurant operations and address user needs. Each function is derived
from user stories, and system objectives.

1. User Authentication and Authorization
a. Allow secure login and access based on user roles (e.g., admin, driver).
b. Verify driver eligibility (right-to-work check).
2. Shift & Time Tracking
a. Enable drivers to check in and check out.
b. Automatically record start and finish times.
3. Weekly Wages Calculation
a. Calculate wages based on:
i. Total hours worked
ii. Price per mile
iii. Number of deliveries
4. Mileage-Based Payment Calculation
a. Record mileage per delivery and calculate additional payments based on preset
rates.
5. Delivery Management
a. Assign delivery orders to drivers.
b. Update and track delivery status (e.g., ongoing, delivered).
c. Record and display delivery time averages.
6. Route Optimization
a. Provide route suggestions for multiple deliveries to minimize travel time and
cost.
7. Automatic Address Detection
a. Extract address from images or shared content using OCR or metadata.
8. Driver Tracking
a. Show live driver location on a map for monitoring and reporting.
9. Customer Communication
a. Provide a “Call Customer” button within the app for instant communication.
10. Expense & Cost Tracking
a. Record daily delivery logs.
b. Log petrol expenses manually or from fuel cards.
c. Calculate and summarize daily and weekly expenses.
11. Driver Performance Monitoring
a. Track and report on:
i. Number of deliveries
ii. On-time rate
iii. Missed or delayed deliveries
12. Report Generation
a. Generate detailed reports on:

22



i. Wages
ii. Delivery summaries
iii. Driver performance
iv. Outstanding payments
13. Due Payment Management
a. Track unpaid wages or reimbursements and mark them as settled when paid.

Non-Functional Requirements

These define how the system should behave, focusing on quality, performance, and operational
standards.

Performance
The system must handle up to 100 concurrent users without noticeable latency. Location
tracking updates should occur in near real-time (< 5 seconds delay).

Scalability
The system must support multiple restaurants, each with multiple drivers and deliveries per day.

Security

All personal and wage-related data must be stored securely (e.g., hashed passwords, encrypted
wage records).

Compliance with GDPR and right-to-work legal requirements is mandatory.

Usability
Mobile and web interfaces must be intuitive and user-friendly, designed with accessibility in
mind. Onboarding time for new users should be less than 30 minutes.

Reliability
99.9% uptime for backend services hosted on Azure. System must support offline data caching
and sync when internet is restored.

Maintainability
Codebase should follow modular design and be documented for easy maintenance.
CI/CD pipelines must enable smooth deployment and updates.

Portability
Mobile application must run seamlessly on both Android and iOS using React Native.

23



Business Needs

DeliveryGo is built to fulfill specific business goals and solve real-world operational issues faced
by takeaway restaurants managing in-house delivery staff.

Operational Efficiency
Eliminate manual tracking of hours, routes, and wages through automation. Reduce
administrative workload and improve accuracy in wage and cost calculations.

Cost Control
Track petrol usage, delivery mileage, and staff wages to monitor profitability per shift or per
driver. Identify delivery inefficiencies via route optimization and performance analytics.

Legal Compliance
Simplify and centralize driver authorization, including right-to-work verification and status
management. Minimize risks associated with undocumented employment practices.

Transparency & Accountability
Provide real-time insights into driver activities, earnings, and delivery timelines. Increase driver
accountability and reduce wage disputes through accurate logs and reports.

Customer Satisfaction
Enhance delivery reliability through tracking and communication features. Reduce delays and
improve order accuracy with route optimization and live driver tracking.

24



Information Architecture

The information architecture of DeliveryGo defines how data is structured, organized, and
accessed across the system. It establishes clear data flows between the frontend, React Native
mobile app and Next.js web dashboard), backend services (Supabase with Edge Functions and
Node.js APIs), and the PostgreSQL database. Core entities such as users, deliveries, shifts,
expenses, and payments were modelled using an Entity-Relationship Diagram (ERD), ensuring
logical data representation, referential integrity, and consistency. The system adopts a multi-tier,
layered architecture to separate concerns and improve scalability, maintainability, and security.

n boarmbn() - J,n.lv

or\.c\*& Le S
’-—_\

o Ad nek
{bﬁ.l Cie c,o.hl'\ o Corl

= SV - zg-/adug

P AT T S N P

}Z€§+00¢61\+ 1 Wort W
—— e SO

odd  pecyyunent
SR v

Piz2a Y2 -

Nan € A Loeo':);en

o W S

Lan. Nomben. Rey
?L\Jb, aaun, L‘,-(gnJC/

—

L ehardy  dellver™
S-foctuS

Figure 6 - Information Architecture and Sketching

At the highest level, DeliveryGo operates within a client—server model. The mobile application,
built using React Native with Expo, represents the primary interface for delivery drivers,
enabling them to log shifts, manage deliveries, and track mileage in real time. In parallel, the
web dashboard developed with Next.js provides restaurant owners with the tools required to
assign deliveries, monitor driver performance, and generate payment reports. These two
presentation layers communicate with the backend through secure APls and real-time data
subscriptions.

The backend layer was implemented using Supabase, which integrates authentication, database
access, and real-time functionality. Supabase Edge Functions and lightweight Node.js
microservices were employed for operations that required additional server-side computation,
such as payment calculation or secure delivery assignments. By leveraging this serverless and
modular design, the system avoided the overhead of complex infrastructure management while
maintaining flexibility for future scaling.

25



System Design
The system design phase established how each component of DeliveryGo works together to
meet project requirements. A layered design was implemented comprising:

Pizza 90 v e o l@
2 Don't forget Q _R:ﬂ'%ﬁ\"—_’
Nyt Wenke 4 fad «3 USen. —punnT™y

SR Rl Slo s TR R
&n"vt”’ l ch-lmur\mf—

— Y e Aun &
[ase | P S
Aralie  Yeot1

Nam e . hame.

T.19%  Eanned + Pl ;
SR
@j | “asnhine B ML Tour . peme
ond e Hstery S fanf P hon < Phon-c
(;)ww ac.ldi\"« — mNL

RS ) S Feapiny , ﬂ
g bR e e
. @oiuN 4 Vit
' Ui‘fl\.,d

Oodel Vpannitl e V,Lc < b o Hertfordshire e

Figure 7 - System Design Sketching

Frontend Layer: React Native mobile app (for drivers) and Next.js web dashboard (for

restaurants).

Backend Layer: Supabase for authentication, real-time data subscriptions, and PostgreSQL
hosting; Supabase Edge Functions and Node.js microservices for server-side logic.

Database Layer: PostgreSQL database accessed through Supabase ORM, providing secure and
efficient queries.

External APIs: Google Maps for navigation and mileage tracking, Tesseract OCR for address
recognition, Twilio for SMS-based authentication.

26



ER Diagram

The DeliveryGo data model centers on a single profiles entity that represents both actors in the
system—drivers and restaurants—distinguished by a role attribute. Each profile stores core
identity and contact details, plus remuneration defaults (hourly rate, mileage_rate). Profiles are
created in lock-step with platform identities via a foreign key to auth.users, ensuring account
provenance and enabling ON DELETE CASCADE user lifecycle management. A convenience
pointer, active_connection_id, records the currently selected relationship context for a user.

DeliveryGo main < Connect

ema public

connections

[

® id

@ driver_id

5
: &
2

restaurant_id

deliveries hourly_rate

* i
& driver_id

invited_b
® start_time ¥

*

restaurant_id
& status e
shift_id

created_at
and_time * i

*
*
# mileage_rate
*
*
*

driver_name
# created_at

restaurant_name

restaurant_postcode

* & + 9
5
E

subscription_and

local_rate

posteode

sssss
country

towen

& status auth.users.id

~ postcode
start_time

country
complated_at

hourly_rate
® created_at

mileage_rate
Fnnnactinn id

user_trial_history (L @ created_at

* i

*

updated_st
® © phone active_connection_id

# trial_start_date active_connection_n

subsscription_end

local_rate

Figure 8 - ER Diagram

Operational relationships between drivers and restaurants are captured in connections, a
linking entity that models a many-to-many association between profiles. Each row binds exactly
one driver to one restaurant and carries contract-specific terms (hourly_rate, mileage_rate),
invitation provenance (invited_by), and workflow state (status). The UNIQUE(driver_id,
restaurant_id) constraint prevents duplicate ties, establishing a canonical contract per pair.

27



Work sessions are recorded in shifts, each tied to a driver and a restaurant, and optionally to a
specific connection_id to lock the session to the applicable contract terms. Temporal fields
(start_time, end_time) and a finite state machine (status € {active, ended}) support accurate
wage computation and auditability. Cascading deletes from profiles guarantee orphan-free
cleanup of historical shift data when an actor is removed.

Task-level execution is represented by deliveries. Each delivery references the responsible
driver and restaurant, and may link to the shift during which it occurred and to the governing
connection. Attributes capture operational and financial facts, including address, postcode,
distance_miles, earning, verification and contact data, timestamps (start_time, completed_at),
and lifecycle (status € {ongoing, completed}). This structure enables reconstruction of
productivity, punctuality, and cost metrics per actor, per shift, or per contract.

A supporting user_trial_history table records one trial entitlement per unique phone number,
enforced by a UNIQUE(phone) constraint. This is intentionally decoupled from profiles to allow
pre-registration trials and to protect pricing logic from account churn.

Across the schema, referential integrity is enforced via foreign keys with appropriate ON
DELETE actions (CASCADE for ownership, SET NULL for optional associations). Timestamps
default to now() to guarantee temporal traceability. In the ER diagram, cardinalities are: profiles
1..—connections—..1 profiles; profiles 1..*—shifts; profiles 1..* —deliveries; shifts 1..*—
deliveries (optional). This normalised model minimises redundancy while preserving the
contractual and temporal context required for fair, auditable wage and mileage calculations.

React Native Application

The DeliveryGo mobile application was developed using React Native, chosen for its ability to
deliver high-performance, cross-platform applications from a single codebase. This approach
significantly reduced development overhead while ensuring consistent functionality across both
iOS and Android platforms (Akter et al., 2021). The framework’s modular component
architecture and strong community support made it well suited for rapid prototyping and
production deployment in alignment with agile development practices (Majchrzak et al., 2022).

The driver application implemented all core workflows identified during requirements
gathering. These included secure authentication via Supabase’s phone-based login system, shift
management (start, active tracking, and end), delivery creation and status updates, and
automated wage calculation based on mileage and hourly rates. Google Maps integration
supported mileage tracking and navigation, while real-time synchronization with Supabase
ensured that driver updates were reflected immediately on the restaurant dashboard. Such
near-instant updates are critical in logistics applications, where delays in data propagation can
reduce operational efficiency (Zhang et al., 2020).

28



The development process was streamlined by adopting the Expo ecosystem, which provided
rapid testing, device API integration, push notification services, and over-the-air (OTA) updates.
Expo EAS Build facilitated the generation of signed binaries for submission to the Apple App
Store and Google Play Console, enabling a smooth release pipeline and reducing deployment
friction (Expo, 2023). Application state was managed using Zustand, a lightweight state
management library designed for predictable data handling, ensuring that session, delivery, and
shift information were accessible globally across screens without redundant API calls.

Overall, the React Native application provided drivers with a lightweight, responsive, and user-
friendly interface that was capable of supporting real-world delivery management tasks. By
combining React Native with Supabase, Expo, and third-party APls, the system balanced
performance, maintainability, and scalability, while also conforming to academic principles of
sound system design and applied research.

Database Implementation

The database layer of DeliveryGo was implemented using PostgreSQL, deployed through
Supabase, to provide a reliable and scalable foundation for data persistence. PostgreSQL was
selected for its proven stability, advanced relational features, and strong support for
transactional workloads, all of which are critical in maintaining accuracy across deliveries, shifts,
and payment calculations (Stonebraker & Kemnitz, 1991). Supabase extended this functionality
by offering real-time subscriptions, authentication, and RESTful endpoints automatically
generated from the schema, thereby reducing backend overhead while preserving flexibility
(Supabase, 2023).

Asionis Labs  Free DeliveryGo main Connect

Table Editor

public

New table B Create a table
Design and create a new database table
Recent items

.shifts
connections

deliveries

.profiles

Figure 9 - Database Implements

29



The schema was derived from the Entity-Relationship Diagram (ERD), which modelled the key
entities of the system: profiles, connections, shifts, and deliveries. The profiles table
represented both drivers and restaurants, with roles distinguished through a controlled
attribute. A connections table established contractual relationships between restaurants and
drivers, enabling flexible management of hourly and mileage rates. Shifts recorded working
sessions for drivers, while deliveries captured granular operational data such as addresses,
distance travelled, earnings, and timestamps. Referential integrity was enforced through foreign
key constraints, with cascading delete policies to ensure data consistency and avoid orphaned
records.

Supabase’s real-time features enabled event-driven synchronization across clients. For example,
when a driver completed a delivery, the associated update in the deliveries table was instantly
propagated to the restaurant dashboard, ensuring operational transparency. In addition,
Supabase Row-Level Security (RLS) policies were applied to enforce role-based access control,
ensuring that sensitive data such as driver contact details or payment rates could only be
accessed by authorized users, thus aligning with GDPR compliance requirements (Voigt & Von
dem Bussche, 2017).

To facilitate safe and efficient interactions between the application layer and the database,
Prisma ORM was used. Prisma provided type-safe query building, schema migrations, and query
optimization, which reduced the risk of runtime errors and improved developer productivity
(Prisma, 2023). Performance considerations were addressed by indexing frequently queried
fields such as driver_id, restaurant_id, and status, enabling efficient retrieval of shift and
delivery records even at scale.

Overall, the database implementation provided DeliveryGo with a robust, secure, and high-
performance data layer. The combination of PostgreSQL's relational integrity, Supabase’s real-
time infrastructure, and Prisma’s type-safe abstraction ensured that the application could
support operational requirements while remaining scalable for future enhancements.

Backend APl Development

The backend of DeliveryGo was implemented using Supabase Edge Functions, supported by
PostgreSQL as the underlying data store. Edge Functions provided a serverless execution
model, enabling custom business logic to be securely executed at scale without maintaining
dedicated infrastructure (Supabase, 2023). This approach reduced operational overhead while
ensuring low-latency responses for client applications.

30



Apple Developer Account and Google Play Console

A App Store Connect Analytics

Dashboard

iet ready to publish your app. Show more

(@) Age Ratings Are Changing = DeliveryGo - Delivery Driver

Apple has introduced an updated age rating system with more granular age uk.co.deliverygo - Draft app - Temporary app name 'uk.co.deliveryg

can view your adjusted age ratings and respond to new ratings questions frg

Production

o Inactive
DeliveryGo - Delivery Driver Show test tracks v

DeliveryGo

Closed testing

Apple Store Google Play Store

Figure 10 - 10S & Android Developer Account Setup

To distribute the DeliveryGo mobile application to end-users, developer programmed enrolment
was required with both Apple and Google. The Apple Developer Program provides access to
code-signing certificates, TestFlight for beta testing, and distribution through the App Store.
Similarly, the Google Play Console enables application publishing to the Play Store, along with
services such as crash reporting, performance monitoring, and staged rollouts (Apple, 2023;
Google, 2023). Compliance with these platforms’ guidelines was necessary to ensure approval
and accessibility on both iOS and Android devices.

Twilio SMS Authentication

@ Twilio Home Nazmul Hossain ~ Q  Jumpto Admin v 0 g8 AR v

Account Dashboard
Ahoy, Nazmul

Develop | Monitor Get started with Twilio O My Tutorias

Phone Numbers

For You Verifications Notifications Marketing Customer Care Custom

* Quick start tutorial
Verify Service SID: VA5S000e277d30075f800cf1********** | Edited 20 days ag( O ®
DeliveryGo :
Continue building > Learn more (2 @ 7)
ala

Authentication  Verify useridentity  Show more

Figure 11 - Twilio SMS OTP Setup

31



For secure and user-friendly onboarding, DeliveryGo employed Twilio Verify API to implement
SMS-based phone number authentication. This approach aligns with industry practice, as SMS
verification remains a widely adopted second-factor mechanism for establishing trust in mobile
systems (Alashhab et al., 2021). Twilio provided scalability and integration with Supabase
authentication workflows, ensuring reliable delivery of one-time passcodes across multiple
regions.

Expo EAS Build and Continuous Delivery

Builds

Q o

D DeliveryGo . = Android internal distribution build 1.0.0 (7)

& Android Play Store build 1.0.0 (7)
£ .

build 1.0.0 (6)
| & i0S App Store build 1.0.0 (9)

y Store build 1.0.0 (8)
t17

& i0S App Store build 1.0.0 (8)
] t19 F

s Android Play Store build 1.0.0 (5)
t 19 hou

961607

s Android Play Store build 1.0.0 (4)
bef53fex

W iOS App Store build 1.0.0 (7)
) PP N bof53fex

, & iOS App Store build 1.0.0 (6)

uild 1.0.0 (4)

o nhronju N
nhror T ‘ & i0S App Store build 1.0.0 (3)

Figure 12 - ESA Application production Build Dashboard

To streamline the build and deployment pipeline, DeliveryGo utilized Expo Application Services
(EAS Build). EAS enabled cloud-based compilation of signed binaries for iOS and Android
without requiring local dependency management, thereby reducing complexity in multi-
platform deployment. Combined with over-the-air (OTA) update capabilities, EAS Build allowed
developers to ship incremental improvements quickly and with minimal downtime (Expo, 2023).

Additional External Integrations

Beyond core distribution and authentication services, additional tools supported project
implementation. These included Figma for collaborative Ul prototyping, DrawSQL for visual
database schema design, and GitHub Actions for continuous integration and delivery (Cl/CD).
Collectively, these services accelerated development workflows while ensuring alignment with
best practices in software engineering and system deployment (Fowler, 2020).

32



Testing & Quality Assurance

Testing and quality assurance (QA) formed an integral part of the DeliveryGo development
lifecycle, ensuring that the system was both functionally reliable and aligned with user
requirements. A multi-layered testing strategy was adopted, combining automated methods
with simulated and end-user evaluations to validate both technical performance and usability.

At the code level, unit testing was conducted on individual modules, including state
management functions in the React Native frontend and Supabase Edge Functions in the
backend. This ensured that isolated components behaved as expected and helped identify
regressions early in the development cycle (Myers et al., 2011). Integration testing followed,
focusing on the interaction between the frontend, backend APls, and third-party services such
as Twilio (SMS verification) and Google Maps (distance estimation). These tests confirmed the
seamless flow of data across layers, verifying that user actions in the mobile app produced
consistent updates in the database and dashboards.

For mobile deployment, Apple TestFlight and the Google Play Console were used to distribute
pre-release builds to a controlled group of testers. These platforms enabled structured beta
testing, crash reporting, and performance monitoring, thereby identifying device-specific issues
across i0S and Android ecosystems (Apple, 2025; Google, 2025).

In addition, simulated testing was performed to replicate real-world delivery workflows in a
controlled environment. Scenarios such as starting and ending shifts, creating deliveries,
updating statuses, and calculating wages were executed repeatedly to confirm system stability
under different usage patterns. End-user testing was also carried out with representative
participants to evaluate usability, clarity of the user interface, and responsiveness. Feedback
gathered during these sessions informed minor design adjustments and validated that the
system met the expectations of its intended stakeholders.

Together, these practices provided a comprehensive QA framework, ensuring that DeliveryGo
was technically robust, user-friendly, and ready for deployment in operational contexts.

33



Deployment to iOS Store

After testing and quality assurance were completed, the DeliveryGo application was deployed to
the Apple App Store for distribution. Enrolment in the Apple Developer Program provided
access to provisioning profiles, certificates, and TestFlight for beta testing. The production build
was generated using Expo EAS Build, ensuring compatibility with Apple’s technical
requirements.

App Store Preview

DeliveryGo - Delivery Driver (-
Manage Your Delivery Drivers

Q Nazmul Hossain
yesigned for iPad
Free

DeliveryGo View in Mac App Store 7

Screenshots ipad iPhone

Scan the Delivery See Daily, Weekly, Check Delivery Set up Hourly,
Address and Get and Monthly Wages Start and End Time Local Delivery, and
Direction and Performance And Status Per Miles Rates

Create your profile

Figure 13 - 10S App Store Listing

DeliveryGo Navigation Workflow

As part of the quality assurance process, particular attention was given to validating the
navigation flow within the DeliveryGo mobile application. A smooth and intuitive navigation
structure was critical to reducing cognitive load for both drivers and restaurant users, ensuring
that essential tasks could be completed with minimal interaction steps.

34



Onboarding & Registration

This is the initial user journey for new users signing up for the service.

1. Welcome Screen: Users are prompted to sign in with their phone number and a country
code. Tapping "Send OTP" sends a one-time password via SMS.

2. OTP Verification: Users enter the 6-digit OTP to verify their phone number. Successful

verification directs new users to the Profile Completion screen and existing users to the
Dashboard.

3. Profile Completion (for new users): Users choose their role as a Driver or Restaurant.
For drivers, a form requires their name, email, hourly rate, mileage rate, and address.
Tapping "Submit Profile" creates their account and takes them to the Dashboard.

Dashboard & Delivery Management

This is the core functionality for drivers to manage daily operations.

1. Dashboard: The central hub for drivers. It displays a Status Card with real-time earnings
and shift duration. A large button allows the user to "Start" or "Stop" their shift. The
screen also features a scrollable Deliveries List with details like address, earning, and
status. Drivers can open a delivery's destination in a navigation app via an icon.

2. Manual Delivery Addition: At the bottom of the Dashboard, drivers can add deliveries
not assigned through the app by tapping "Add Manually" or "Take Photo" (to document
a physical receipt).

3. Delivery Details Pop-up: Tapping on a delivery item opens a detailed view. This pop-up
displays the full address, earning, status, and verification code. It includes two action
buttons: "Mark as delivered" to complete the.

Reporting & Profile Management

This section is for reviewing past performance and managing personal account information:

1. Connections Screen: This allows users to view, search for, and manage partnerships with
restaurants. Users can accept or reject incoming connection requests.

2. Reports Screen: This provides detailed analytics on earnings and performance. Users can
filter data by connection and time-period (Today, Week, Month, Year). The screen
displays key metrics like total delivery fees, total miles, and average hourly earnings,
along with a performance chart tracking earnings and mileage.

3. Profile Screen: Users can view and update their personal information, including name,
email, phone number, and address. A prominent "Logout" button is also available.

35



Primary Research — Methodology

Given the ethical and practical constraints of this study, it was not possible to involve real
restaurant owners, customers, or delivery drivers directly. Instead, a simulation-based primary
research approach was adopted. In this method, the researcher personally enacted both the
traditional manual delivery process and the proposed DeliveryGo system in a controlled setting.
This involved writing delivery details using pen and paper to replicate the old workflow,
recording timings for each task, and manually calculating driver wages using postcode
categories. The same scenarios were then re-enacted within the DeliveryGo prototype, where
identical deliveries were logged digitally, navigated using integrated routing, and wages
calculated automatically on a per-mile basis.

; oI Scan the Delivery See Daily, Weekly,
Detiverry ) Address and Get and Monthly Wages

Direction and Performance
Brrr

- -

Hohi erd

St Alban -
£142.72 24h 1Im

£121.61 e o .
£169.33 £312.05

\\/ e S\«J}r\ Dedveries (30)

358 Briars Ln, Hatfleld AL1O BES, UK

Total - £ 42

Figure 14 - Manual vs Automated Calculations

By replicating thirty sample deliveries under both systems, it was possible to generate
measurable data on administrative time, error exposure, communication efficiency, and wage
calculation accuracy. This simulation enabled a direct comparison between manual and
automated methods, while ensuring consistency in conditions and eliminating variability that
might arise from involving multiple participants.

This approach ensured that the investigation remained feasible, ethical, and controlled, while
still producing reliable metrics to answer the research question:

36



“To what extent can a delivery driver management system improve operational efficiency,
accuracy in wage and mileage-based calculations, and reduce time spent on administrative tasks
compared to manual methods used by takeaway restaurants?”

Manual Process Simulation — The Old Way

In typical takeaway restaurants and small businesses, delivery drivers and managers rely heavily
on handwritten logs and ad hoc communication to track working hours, record delivery details,
and compute compensation. This process begins each morning with the preparation of paper
templates on which the manager writes the driver’s name, date, and starting time. A separate
ledger is used to log each delivery’s postcode alongside its start and end time. Preparing this
documentation requires approximately three minutes but more importantly establishes the
foundation for a highly labor-intensive routine.

“Pestesde

ALg C0-p
B X2z
ALXA2H

AL 2 DE

5. 50
6 38
6 65
X;20

ALAoe gTd
hrdo oHP
RL16 gES

HLR 2 JA

pLz 278
LR 2Ly
KWLR I T

ALR2LEY

ALR 2 NG
ALRUEA

X 5o
g::oh
£: Yo
grn
2:20
o ESEH

dol: 23

43 6>
228

LRy pf
AR YDA

Figure 15 - Manual Way - Work Simulation Image

For the purposes of this study, the manual workflow was simulated by the researcher using pen
and paper, carefully recording the duration of each task with a stopwatch to replicate the real-
world operations of a small takeaway restaurant. During service hours, every new order
required manual entry into the ledger, verification of customer addresses using a consumer
mapping application, and occasional manual phone calls to customers or restaurant owners.
This approach ensured that the simulation could quantify time costs and inefficiencies with
accuracy while preserving consistency across all test cases.

37



When an order arrived, the restaurant owner or driver added a row to the ledger, recording the
postcode and start time—a task taking around one minute per order. The driver then manually
entered the address into a mapping application, double-checking the results to ensure accuracy.
This verification step added approximately two minutes per delivery. Manual entry is inherently
error-prone; for example, confusion between “Green Lane Road” and “Green Lane Close” could
lead to significant delays. Industry analyses similarly highlight that manual route planning with
spreadsheets or notes is time-consuming, error-prone, and lacks scalability (Samsara, 2023;
Track-POD, 2023a).

Communication with customers and managers was equally fragmented. Drivers often had to
manually dial numbers from receipts when clarifying directions or delivery status, a task that
consumed roughly two minutes. Simultaneously, managers frequently called drivers to request
updates on location or estimated return time, consuming an additional minute per call. Studies
emphasize that such fragmented, phone-based communication often leads to delays,
inefficiencies, and even disputes in fleet operations (Basestation, 2023a; Basestation, 2023b).

At the end of each working day, drivers returned with
bundles of paper receipts. The manager manually
inspected each one to calculate compensation for
mileage and petrol allowances. In this simulation, ~/“Tﬁ 1
compensation was categorized by postcode: £0.70 per Rocs Gtprt J Red e
local delivery (Hatfield), £1.50 for deliveries to Welwyn

Garden City, and £2.50 for those reaching St Albans. Hdi eid
However, this method failed to account for actual

Detiverty L 21LE¢

distances travelled; for instance, a 2.5-mile trip and a 6- oty Flban
mile trip within the same category received identical

compensation. Research indicates that manual data We hwyn
entry has an error rate of up to 4% and that correcting Qanden

such mistakes imposes significant costs (Orderease,
2023a). Furthermore, the repetitive nature of end-of-
day reconciliations consumed valuable staff time that
could otherwise be directed towards higher-value tasks
(Orderease, 2023b).

Figure 16 - Manual Delivery Fees Calculation

38



Simulating a day with 30 deliveries revealed the scale of inefficiency: three minutes for template
preparation, one minute for recording each order, two minutes for address verification, two
minutes for customer communication, and an additional minute for each manager—driver check-
in. Reconciling receipts at the day’s end consumed another ten minutes. Collectively, these tasks
accounted for approximately 193 minutes (>3 hours) of administrative time per day. While the
system generated essential records, it lacked systematic performance monitoring. Metrics such
as delivery duration, mileage, or earnings per hour could only be estimated manually, if at all.

Activity

Description (summary)

Approx. time per
occurrence

Daily template preparation

Create paper template, list drivers’ names
and start times

~3 min per day

Recording order details

Write postcode, start time and end time

~1 min per order

Address verification

Manual entry into map application and
double-check address

~2 min per order

Customer communication

Dial customer phone number manually if
needed

~2 min per call

Manager—driver check-in

Owner calls driver to ask about status and
location

~1 min per call

End-of-day reconciliation

Count receipts and calculate wages and
petrol allowance

~10 min per day

Figure 17 - Manual Work Time Tracking Table

This simulation highlights how paper-based methods burden drivers and managers with
repetitive data entry, redundant communication, and opaque record-keeping. Consistent with
recent analyses of delivery operations, manual processes reduce real-time visibility, increase the
risk of error, and constrain scalability (Samsara, 2023; Track-POD, 2023a). They also undermine
effective communication, leading to delays, inefficiencies, and missed deliveries (Basestation,
2023a; Basestation, 2023b). These findings reinforce the need for an integrated digital solution
that automates record-keeping, provides real-time navigation and communication, and
calculates wages based on actual mileage.

39




DeliveryGo App Simulation — The New Way

The DeliveryGo prototype replaces the fragmented, paper-based routines of traditional delivery
management with a unified digital workflow. In the DeliveryGo system, all authorized drivers are
registered within the application. To begin a shift, the driver simply taps Start Shift, which
automatically records the start time and date, eliminating the need to prepare paper templates
or hand-write names and start times.

Scan the Delivery See Daily, Weekly, Find Nearby Drivers Check Delivery
Address and Get and Monthly Wages or Restaurants and Start and End Time
Direction and Performance Send Request And Status

| Delivery Details

Delivery Fees 18 Wellcroft Rd, Welwyn Garden City AL7
£72.51 h om | i Poguest 3JY, UK, ALY, United Kingdom

Today's Earming £142.72 26h 1im i Status
a8 —— ——— 47154510
£169.33 £312.056 +44 1388 436844
Deliveries (30)

a7
358 Briars Ln, Hatfield AL10 8ES, UK - United Kingdom

€070 045miles Code: 01790076
32 miles

18 Wellcroft Rd, Webwyn Garden City
AL7 30Y, UK

8 Boach Cres, Wheathampstead, St
Albans ALS 8TD, UK
£398 5690

Figure 18 - DeliveryGo Automated Way - Work Simulation Image

For this study, the digital workflow was simulated by the researcher using the DeliveryGo
prototype app, with timings and outcomes carefully recorded to replicate the real-world
experience of a small takeaway restaurant. Each action was measured against the same
stopwatch metrics used in the manual simulation, ensuring that the comparative findings are
based on consistent data.

40



When a new order arrives, the driver does not
manually log postcodes or times. Instead, a
photograph of the delivery receipt is taken using the
app’s camera. Optical character recognition (OCR)
and parsing modules extract the postcode, delivery
address, and phone number, which are then stored
automatically in the database. This automation
reduces the administrative effort per order from
approximately one minute to just a few seconds
while avoiding transcription errors.

Navigation is fully integrated. Once delivery details
are captured, the Directions icon loads the
customer’s location directly into the route planner,
eliminating manual entry. Automated route
optimization is aligned with industry best practices,
which emphasize that modern dispatch systems plan
routes based on real-time traffic, priorities, and fuel
efficiency (Track-POD, 2023a). Such systems also
provide real-time vehicle tracking, driver—dispatcher
communication, and fleet analytics (Track-POD,
2023a). By contrast, manual address entry consumed
about two minutes per order and carried the risk of
errors or misdirection.

Scan the Delivery
Address and Get
Direction

i

Dashboard

Delivery Fees
£73.49

Shift Duration
1h10m

Today's Earning
£81.77

Deliveries (30)

8 Beech Cres, Wheathampstead, St
Albans AL4 8TD, UK

£3.98 569 miles Code: 272 303 303
Completed Phone: 07533 006 408

11 Farm Cl, Welwyn Garden City AL8
6RP, UK

£2.52 3.6 miles Code: 20384133
Completed Phone: +44 1388 436844

11 Wood Cl, Hatfield AL10 8TY, UK
£0.70 0.19 miles Code: 267 576 744 4
Completed Phone: 07533 006 408

2 Take Photo

[e]
(=)
Profie

Figure 19 - DeliveryGo Automated Delivery Records
& Details Image

41




Communication is similarly streamlined. If the driver
Check Delivery needs to contact a customer, the in-app Phone icon dials
Start and End Time
And Status

automatically, removing the need to copy numbers from
receipts. Managers can monitor all drivers on a real-time
dashboard showing locations, statuses, and remaining
miles, eliminating the need for periodic check-in calls.
Comparable dispatch systems emphasize how real-time
dashboards and integrated messaging reduce delays and
miscommunication (Fleetroot, 2023a; Track-POD, 2023a).

Delivery Details

18 Wellcroft Rd, Welwyn Garden City AL7
Y0 A Onfted Kingdom Performance monitoring is built into DeliveryGo. Each
B R delivery’s distance, duration, and outcome are logged

i ot 1241388 436844 automatically, enabling calculation of performance

PosiCode A metrics such as deliveries per hour, earnings per shift,
o e and average driving speed. Studies confirm that modern
— - fleet systems track time, fuel consumption, and planned-
End Time 1255am versus-actual performance to support staff evaluation
Earing F2.20 and operational improvements (Fleetroot, 2023b).
Instead of managers reconciling receipts manually,
DeliveryGo computes wages automatically based on
hourly rate, mileage allowance, and any additional pay.
Daily, weekly, and monthly summaries are presented in
graphical form.

Status

Distance 3.2 miles

Figure 20 - DeliveryGo Delivery Details Start
End Time Records

42



A simulation of 30 deliveries demonstrates efficiency
gains. In the manual workflow, administrative tasks
consumed approximately 193 minutes. Under
DeliveryGo, template preparation and reconciliation
are eliminated, order capture and address
verification take under 20 seconds each, customer
communication requires a single tap, and check-ins
are replaced by the dashboard. Total administrative
time was reduced to approximately 25 minutes,
saving nearly 2.8 hours per day. This aligns with
industry reports that automation reduces manual
effort, enhances productivity, and improves
scalability (Fleetroot, 2023a).

Accuracy in wage calculation is also significantly
improved. The manual approach compensated
based on postcode categories, leading to
underpayment for longer journeys. In the simulation,
the manual system paid £42.00 for 30 deliveries,
while DeliveryGo’s per-mile calculation yielded
£73.64—an underpayment of approximately £31.64
(=43%). Although the restaurant’s wage bill
increased, the digital system ensured fair,
transparent, and dispute-free remuneration, aligning
with best practices in compliance and employment
standards.

See Daily, Weekly,
and Monthly Wages
and Performance

Pizza GoGo ~
Month Year

Delivery Fees Total Working Hours
£73.49 17h1Im

Hourly Earning Total Earning

£120.33 £193.82

1min

y Time
19.5
es per Hour

414.5 mph
vy Spead

Figure 21 - DeliveryGo Automated Daily Wages
Calculation & Performance

43




Activity

Description (summary)

Approx. time per
occurrence

Daily template preparation

Not required — drivers start shift with
one tap: system auto-logs time and
driver

~0 min per day

Recording order details

Receipt photo captured - OCR auto-
extracts address, postcode, time, and
phone number

~10-15 sec per order

Address verification

Automated navigation — address parsed
directly into maps, no manual entry

~5 sec per order

Customer communication

One-tap in-app call from extracted
number

~10 sec per call

Manager—driver check-in

Eliminated — dashboard shows live driver
location and status

~0 min

End-of-day reconciliation

Not required — wages and mileage auto-

~0 min per day

calculated and logged in reports

Figure 22 - DeliveryGo Automated Time Tracking Table

Hatfield v [

Number v Postcode v Miles v Delivery Fee v

1 AL10 8TY 1.1 0.77 |
2 AL10 OHP 09 07 |
3 AL10 8ES 13 091 |
4 AL10 OJP 18 126 |
5 AL100LS 07 |
6 AL10 OLX 14 0.98 |
7 AL10 ONG 12 0.84 |
8 AL10 OPH 1.1 0.77 |
9 AL10 0QT 16 112 |
10 AL10 ORY 1.5 1.05

Subtotal 129 9.1

Welwyn Garden City v @ StAlbans v

Number v Postcode v Miles v Delivery Fee v

Number

v Postcode v Mies

v Delivery Fee v

1" ALS 6RP 42 294 26 AL4 8TD 62 434
12 AL7 37P 38 266 27 AL4 0EQ 59 413
13 AL7 1QH 45 3.15 28 AL T 65 455
14 AL7 20E 39 273 29 AL4 90X 58 4.06
15 AL7 2HA 41 287 30 AL4 9ST 6.1 427
16 AL7 208 35 245 Subtotal 3058 21.35
17 AL7 38T 48 3.36
18 AL7 3JU 46 322
19 AL7 3LV 51 357
20 ALT 3NY 44 3.08
21 AL7 4BA 4 28
2 ALT 4DP 42 294 TOTAL 7364
23 AL7 4DX 37 259
24 AL7 4HA 43 3.01
25 AL7 4RZ 36 2.52

Subtotal 61.7 43.19

Figure 23 - DeliveryGo Delivery Fees Calculation Rates

44




The DeliveryGo simulation illustrates how a purpose-built digital platform can transform
delivery operations. By eliminating repetitive data entry, providing real-time navigation and
communication, embedding performance analytics, and ensuring accurate wage calculation,
DeliveryGo delivers greater efficiency, transparency, and fairness than traditional paper-based
methods. These results are consistent with the broader literature on dispatch management,
which highlights optimized fleet utilization, lower costs, enhanced customer satisfaction, and
scalability as key benefits of digital transformation (Fleetroot, 2023b; Track-POD, 2023b).

Results — Comparative framework (time, cost, errors,
efficiency)

This section compares the manual, paper-based delivery process with the DeliveryGo app in
terms of time expenditure, cost accuracy, error rates, and operational efficiency. The aim is to
demonstrate quantitatively how automation transforms delivery management and to
substantiate these findings with evidence from the literature.

Comparison of Manual vs DeliveryGo Process Times

600 | ™= Manual Process
DeliveryGo System

w
o
o

400

300

200

Time per occurrence (seconds)

I H B
0 = =

Figure 24 - Manual vs Automated Comparison Chart

45



Comparative metrics

The key comparative metrics are derived from the manual and app-based simulations and are

summarized in Table 1. These results align with industry reports on the performance differences
between manual and automated dispatch systems. Approximate values may vary depending on
individual restaurant conditions.

Metric

Manual process (Old way)

DeliveryGo process (New way)

Administrative time
per day

= 193 min for 30 deliveries

= 25 min for 30 deliveries

Time per delivery

= 6.43 min (recording, verifying
address, calls, check-ins)

= 0.8 min (automated capture,
integrated navigation and
one-tap communication)

Cost to restaurant
(wages)

Fixed per-delivery rates; 30
deliveries paid £42.00

Per-mile calculation; 30 deliveries
paid £73.64

Cost per delivery

= £1.40 average across
categories

~ £2.45 average (reflects true
mileage)

Error exposure

High risk of transcription and
routing errors; manual data
entry error rates reported
around 1 %-4 %

Low - Automated OCR and route
planning minimize transcription

errors; dynamic routing reduces
mis-directions

Efficiency (admin
effort saved)

Baseline (3.2 h of admin work
per day)

= 87% reduction in admin effort
(0.4 h per day)

Additional benefits

Limited visibility into driver
locations; fragmented
communication

Real-time tracking, automated
scheduling, integrated
communication, scalability

Figure 25 - Manual vs Automated Comparison Table

46




Communication

receipts; risk of transcription errors
and wasted time.

Category Manual Process (Old Way) DeliveryGo System (New Way)
. One-tap digital check-in/out;
. . Paper-based, prone to missed pdig /
Shift & Time . . . . automated, tamper-proof logs
. entries or manipulation; requires . .
Tracking e directly linked to wage
manual wage reconciliation. .
calculation.
Deliver Addresses written manually; drivers | OCR extracts address from
. y enter into maps manually; errors receipt; automatic navigation
Assignment . . .
and delays common. integration with one tap.
) In-app call function eliminates
Drivers copy numbers from . .
Customer manual copying, enabling faster

and more reliable
communication.

Wage & Expense
Tracking

Wages based on rough estimates of
mileage/hours; disputes frequent.

Automated, data-driven wage
and mileage calculations; petrol
and expenses logged in real-time.

No real-time monitoring: owners

Live dashboards show driver

Monitoring & i . .
Analvtics g rely on trust or after-shift location, delivery progress, on-
4 summaries. time rates, and expense reports.
Scales to multiple drivers and
- Becomes unmanageable as orders ) . ..
Scalability . . . high-volume orders with minimal
increase; high admin workload. o\
additional effort.
High — due to manual entry, Low — automation reduces
Error Rate estimation, and duplication of redundancy and ensures
tasks. consistency.
. . . Transparent wage rules, GPS-
Fairness & Drivers often dispute wages due to P . 8
. . . based mileage, and automated
Transparency inconsistent calculations.

logs reduce disputes.

Figure 26 - Benefits of using Automated System over using manual Pen and Paper

47




Time comparison

The manual process consumed approximately 193 minutes of administrative work for 30
deliveries, including preparing templates, recording order details, verifying addresses, calling
customers and drivers, and reconciling wages at the end of the day. This equates to about 6.4
minutes of admin work per delivery.

By contrast, the DeliveryGo simulation required only 25 minutes for the same number of
deliveries, or 0.8 minutes of admin work per delivery. The app eliminates template preparation
and manual calculations; order capture, address verification, and customer contact each take
only seconds. Overall, DeliveryGo reduced administrative time by = 87%, representing a major
efficiency gain. These results align with findings in the literature, which highlight that automated
dispatching reduces manual effort and accelerates route planning and communication
(SmartRoutes, 2023a).

Administrative Time for 30 Deliveries
193 min

200

175

150

=
N
%2}

Total Time (minutes)
[
~J o
Ui o

u
o

25

0

Manual Process DeliveryGo App

Figure 27 - Time Comparison Chart

48



Cost comparison

Under the manual process, restaurants pay fixed wages per delivery based on postcode
categories. In the simulation, this amounted to £42.00 for 30 deliveries, irrespective of actual
distance. DeliveryGo, however, used a per-mile calculation, resulting in £73.64 for the same set
of deliveries.

While the app’s cost is higher (= £31.64 more), the manual method systematically underpays
drivers, which may lead to disputes, dissatisfaction, or turnover. Importantly, the app saved =
168 minutes of staff time daily, which has opportunity value: staff can redirect efforts toward
customer service or additional orders. Literature also notes that automated dispatching reduces
costs in the long term by optimizing routes, minimizing fuel use, avoiding overtime, and
improving vehicle maintenance planning (Track-POD, 2023b; SmartRoutes, 2023a).

Total Driver Wages for 30 Deliveries

80
£73.64

70

Total Cost (£)
S w o))
o o o

w
(@]

N
o

10

0

Manual Process DeliveryGo App

Figure 28 - Cost Comparison (Driver Wages)

49



Error comparison

Manual processes require drivers and managers to transcribe postcodes, phone numbers, and
times into ledgers. Studies report that manual data entry has an average error rate of 1-4%
depending on task complexity (ConnectPointz, 2023). Such errors may result in misaddressed
deliveries, incorrect wage calculations, or compliance issues. Additionally, manual route
planning, reliant on paper notes and consumer map apps, increases the likelihood of mis-
directions (SmartRoutes, 2023b).

By contrast, DeliveryGo automates this process. Optical character recognition captures
customer details, and integrated navigation loads routes directly. Automated systems
dynamically optimize routes based on traffic and delivery priorities (SmartRoutes, 2023a),
reducing transcription errors and routing mistakes significantly.

Error Exposure in Delivery Management

4.5

4.0

3.5
3%
3.0
2.5

2.0

1.5

Estimated Error Rate (%)

1.0

0.5

0.0

Manual Process DeliveryGo App

Figure 29 - Error Comparison chart

50



Efficiency and other factors

Efficiency encompasses more than speed; it includes productivity, fairness, and quality. The
DeliveryGo dashboard provides real-time visibility of drivers and orders, enabling proactive
adjustments and reducing idle time. Automated systems are recognized for improving resource
utilization, reducing downtime, and streamlining communication (SmartRoutes, 2023a).

The literature further highlights that digital dispatching enhances customer satisfaction and
compliance by providing accurate delivery windows, automated notifications, and reliable
record-keeping (Track-POD, 2023a). DeliveryGo also ensures fairness and transparency: drivers
are paid based on actual miles travelled, while performance metrics improve accountability and
staff motivation. Though automation requires initial investment and training, the long-term
benefits in accuracy, customer loyalty, and scalability outweigh the challenges (SmartRoutes,
2023c¢).

Locating Delivery Addresses: Manual vs DeliveryGo

2.00 min

20
m
L
-
=
E15¢
-
o
=2
w
a
5 1.0
Q
Q
d
=

0.5¢f

6 sec
0.0 -
Manual Process DeliveryGo App

Figure 30 - Locating Delivery Addresses Chart

51



Summary

The comparative analysis demonstrates that DeliveryGo significantly outperforms manual
delivery management. Administrative time falls from over 3 hours to less than half an hour per
day, while compensation becomes more transparent and accurate. Errors caused by manual
data entry and map-reading are minimized. Furthermore, the app offers real-time visibility,
scalable operations, and enhanced customer communication. These findings strongly support
the conclusion that adopting a digital dispatch platform like DeliveryGo is a strategic investment
that delivers measurable operational and financial benefits for small takeaway businesses.

Summary Comparison: Manual Process vs DeliveryGo

B Manual Process
B DeliveryGo App
5

M w = w

Performance Score (1-5 scale)

=

N

oy
<o (-5"‘06“ i o

Figure 31 - Summary Comparison Chart

52



Discussion of Findings and Conclusion

The findings of this study clearly demonstrate that DeliveryGo (the new way) provides
significant improvements over the traditional manual processes used in takeaway delivery
management. By simulating both workflows, it was possible to quantify differences in accuracy,
efficiency, and fairness, and to assess the extent to which the system answers the central
research question:

“To what extent can a delivery driver management system improve operational efficiency,
accuracy in wage and mileage-based calculations, and reduce time spent on administrative tasks
compared to the manual methods used by takeaway restaurants?”

Accuracy of Wage Calculations

The manual method of wage calculation, based on postcode categories, systematically
underpaid drivers in the simulated scenario. For 30 deliveries, drivers received a flat £42,
whereas the DeliveryGo app calculated approximately £74 based on actual mileage. This
demonstrates around a 43% underpayment in the manual process, a finding consistent with
literature highlighting inaccuracies in manual pay calculations and the disputes they generate
(Anderson & Schwieterman, 2018). Manual data entry also carries an estimated 1-4% error rate
(ConnectPointz, 2023), further compounding inaccuracies.

As shown in Figure 28 — Cost Comparison, DeliveryGo’s mileage-based computation ensures
transparency and fairness by eliminating postcode-based discrepancies. This directly answers
the first sub-question: the system removes wage calculation errors by automating per-mile
compensation and linking it with tamper-proof shift logs. Such automation not only improves
fairness but also supports compliance with employment standards (Fleetroot, 2023b).

Time Savings in Administrative Tasks

The manual simulation required approximately 193 minutes of administrative work per day, or
6.4 minutes per delivery, for tasks such as template preparation, order recording, address
verification, and reconciliation. By contrast, DeliveryGo reduced the same workload to just 25
minutes, or 0.8 minutes per delivery. This represents an 87% reduction in administrative effort,
freeing nearly three hours of staff time each day.

As illustrated in Figure 27 — Time Comparison Chart, these findings align with reports that
automation in dispatching dramatically reduces staff workload and improves productivity
(SmartRoutes, 2023a; Track-POD, 2023b). DeliveryGo therefore answers the second sub-
guestion by showing that the system not only reduces administrative burden but also allows
staff to redirect efforts toward customer service or higher order volumes, creating opportunity
value beyond simple time savings.

53



Locating Delivery Addresses

Manual address verification required drivers to enter postcodes into mapping applications, a
process that took around two minutes per order and was prone to error. DeliveryGo automated
this step through OCR and one-tap navigation, cutting the process to seconds.

As illustrated in Figure 30 — Locating Delivery Addresses Chart, this improvement is substantial,
with DeliveryGo reducing the time per order from approximately two minutes to near-instant
recognition and navigation. The literature indicates that manual address handling often results
in delays, mis-directions, and inefficiencies (Samsara, 2023; SmartRoutes, 2023b). DeliveryGo
aligns with industry best practice by eliminating transcription errors and dynamically optimizing
routes based on real-time conditions (Track-POD, 2023a). This directly answers the third sub-
qguestion by demonstrating significant improvements in speed, accuracy, and reliability of
navigation.

Broader Implications

Beyond the specific sub-questions, the findings highlight several broader benefits of adopting
DeliveryGo:

Real-time monitoring and visibility: Managers can track drivers live via dashboards, avoiding the
need for manual phone check-ins (Fleetroot, 2023a).

Scalability: The app handles multiple drivers and higher order volumes without additional
overhead, whereas manual processes quickly become unmanageable (Basestation, 2023b).

Fairness and transparency: GPS-based logs and automated wage calculations reduce disputes
and improve driver satisfaction, addressing a recurring challenge in traditional delivery
management (Orderease, 2023a).

Overall, the research question is comprehensively addressed. DeliveryGo substantially improves
operational efficiency by reducing administrative time by almost 3 hours per day, ensures
accuracy and fairness in wage calculation by basing pay on actual mileage, and streamlines
navigation and communication through automation. The system therefore outperforms manual
processes on all evaluation metrics, supporting the conclusion that digital delivery management
systems such as DeliveryGo represent a strategic upgrade for small takeaway businesses.

54



Future Recommendations & Risk Mitigation

The findings of this study indicate that DeliveryGo has considerable potential to enhance
efficiency, fairness, and transparency in delivery driver management. However, as with any
prototype, further development and validation are required to ensure robust adoption in the
takeaway sector. This section outlines future recommendations for system enhancement and
scalability, followed by a discussion of risk factors and strategies for their mitigation.

Future Recommendations

Real-World Pilot Testing

Although the simulations conducted in this study provided valuable insights, the next step is
controlled pilot deployments in operational restaurant environments. Live testing would capture
empirical evidence on usability, adoption barriers, and measurable performance improvements
under dynamic conditions. Pilot studies would also allow observation of contextual factors—
such as staff habits, customer demands, and network connectivity—that cannot be fully
replicated in simulations.

Integration with Existing ePOS Systems

Most restaurants already use electronic point-of-sale (ePOS) systems to process orders.
Integrating DeliveryGo with such systems would enable seamless order-to-delivery workflows,
reduce duplication of tasks and improve data consistency. Literature indicates that system
fragmentation is a key cause of inefficiency in small businesses (Forbes Technology Council,
2023). By offering APIs or plug-ins for common ePOS platforms, DeliveryGo could become part
of a single, cohesive operational environment.

Enhanced Analytics and Al-Driven Insights

DeliveryGo currently focuses on automating administrative tasks and wage calculation. Future
development could extend its value proposition through advanced analytics. Predictive models
could forecast peak demand, optimize driver allocation, and estimate operational costs.
Machine learning could refine route optimization by learning from historical traffic data, while
performance dashboards could incorporate comparative benchmarking to support management
decision-making.

User Training and Digital Literacy Support

Adoption of new technologies in the takeaway sector may be hindered by limited digital literacy
among staff (Smith & Lee, 2021). To address this, DeliveryGo should be supported by intuitive
onboarding materials, in-app tutorials, and multilingual interfaces. Short training workshops

55



could accelerate confidence among staff and minimize resistance, ensuring that automation is
seen as supportive rather than disruptive.

Scalability for Multi-Restaurant Use

While this project focused on single-branch restaurants, future iterations should support multi-
branch use. Centralized dashboards could allow franchise managers to monitor drivers across
several locations, providing consistent reporting, wage calculation, and route optimization at
scale. This would extend DeliveryGo’s market appeal from small independents to larger
takeaway groups.

Risk Mitigation

Alongside the opportunities identified, several risks must also be acknowledged to ensure
DeliveryGo can be deployed in a sustainable and responsible way. From a technical perspective,
the system’s reliance on internet connectivity poses a potential vulnerability. If restaurants or
drivers experience connectivity outages, the entire workflow could be disrupted. To address
this, future iterations of DeliveryGo should incorporate offline caching and delayed
synchronization, ensuring that core functions such as shift tracking, wage logging, and expense
capture remain accessible even without an active connection.

Another critical consideration relates to data privacy and security. Because the system collects
and processes sensitive information—including driver locations, wage details, and customer
delivery addresses—there is an inherent responsibility to safeguard such data. Compliance with
the General Data Protection Regulation (GDPR, 2018) must therefore be embedded from the
outset. This includes implementing encryption protocols, anonymization for analytical reports,
role-based access controls, and carrying out regular security audits to identify and mitigate
vulnerabilities. Without these safeguards, the risk of reputational damage and legal liability
would undermine trust in the system.

Equally important are adoption and usability risks. In many small takeaway businesses, staff may
have limited digital literacy, which could slow down adoption or lead to improper use of the
application (Smith & Lee, 2021). Resistance to change is a common barrier in such contexts.
Mitigation strategies should therefore include the development of intuitive interfaces,
multilingual support, and structured onboarding programmed. Furthermore, phased rollouts—
allowing restaurants to adopt specific features gradually—would reduce disruption and build
user confidence.

Operational risks must also be considered. Over-reliance on an automated system means that
any major bug or technical outage could bring delivery management to a halt. This risk
highlights the importance of designing clear fallback procedures that allow restaurants to revert
temporarily to manual processes when required. At the same time, establishing robust technical
support mechanisms with rapid response times would ensure that any disruptions are quickly
resolved, minimizing business impact.

56



Finally, ethical and legal risks require careful management. Automated features such as GPS-
based tracking and wage calculation, while essential for transparency and efficiency, may be
perceived as intrusive if not properly communicated. Drivers could interpret constant location
monitoring as excessive surveillance, particularly if it extends beyond working hours. To mitigate
this, DeliveryGo must ensure that tracking occurs only during active shifts, that informed
consent is obtained, and that drivers themselves have access to their own data. By embedding
transparency and fairness into its design, the system can avoid ethical pitfalls and build stronger
trust between employers and drivers (British Computer Society, 2022).

In summary, addressing these risks is as crucial as delivering new functionality. By embedding
technical resilience, strong data governance, user adoption support, operational safeguards,
and ethical transparency into its design and deployment, DeliveryGo can position itself as a
secure and sustainable solution for the UK takeaway industry.

Conclusion

This project successfully addressed the central research question by designing, implementing,
and evaluating the DeliveryGo application as a viable solution to the operational inefficiencies of
manual delivery management in the takeaway restaurant sector. Grounded in a thorough
literature review and executed through a rigorous comparative simulation of both manual and
automated workflows, the investigation provided compelling quantitative and qualitative
evidence that a purpose-built digital platform can substantially enhance efficiency, accuracy, and
transparency.

The primary research, which included a detailed simulation of a 30-order workload,
demonstrated that DeliveryGo significantly outperforms traditional paper-based methods
across all key metrics. The findings reveal a significant 87% reduction in administrative time,
cutting the daily burden from approximately 193 minutes to just 25 minutes. This efficiency
gain, which frees up nearly 2.8 hours of valuable staff time per day, is a direct result of the
system's ability to automate core functions such as shift tracking, order capture via OCR, and
real-time mileage calculation.

Beyond efficiency, the investigation uncovered a critical issue with manual processes: the
significant underpayment of drivers due to reliance on fixed postcode-based wage calculations.
The simulation demonstrated that the manual method resulted in an underpayment of
approximately £31.64 (or 43%) for the same workload that DeliveryGo's GPS-verified, per-mile
calculation valued at £73.64. By embedding this automated and accurate calculation into the
system, DeliveryGo ensures fair, transparent, and consistent remuneration, thereby reducing
the risk of disputes and improving compliance.

57



The DeliveryGo prototype also demonstrates that the chosen project planning and development
methodology, including the use of an Agile approach and a modern technology stack (React
Native, Supabase, etc.). The system's design, which integrates features like a real-time
management dashboard and a streamlined driver navigation workflow, effectively addresses the
core operational pain points identified in the project's introduction. The results align with and
support the broader literature on dispatch management, which positions automation as a key
driver for improved fleet utilization and cost reduction in last-mile logistics.

While the project provides a strong proof of concept, it is important to acknowledge its primary
limitation: the study was conducted under a controlled simulation rather than in a live
restaurant environment. As such, future work should involve empirical testing to validate the
findings in a real-world context. Additional areas for development include exploring seamless
integration with existing ePOS systems, proving scalability for multi-restaurant operations, and
incorporating advanced analytics for predictive demand forecasting.

In conclusion, this research successfully demonstrates that a digital delivery management
solution like DeliveryGo is not just an operational enhancement but a strategic investment that
can fundamentally transform driver management practices in the takeaway sector. By replacing
fragmented manual processes with a single, integrated, and automated workflow, the system
delivers measurable benefits that position small businesses for greater efficiency, fairness, and
future growth.

References

Ali, M., Khan, R. and Yousuf, M., 2021. Workforce management in small delivery businesses.
Journal of Business Logistics, 42(1), pp.89—-102.

Anderson, M. and Schwieterman, J., 2018. The digitization of delivery: How apps and algorithms
are transforming urban transportation and retail. Chaddick Institute for Metropolitan
Development, DePaul University.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., ... &
Thomas, D. (2001). Manifesto for Agile Software Development. Agile Alliance. Available at:
https://agilemanifesto.org/

Basestation, 2023a. Enhancing communication between dispatchers and drivers with waste
management software. [online] Available at: https://www.thebasestation.com/post/enhancing-
communication-between-dispatchers-and-drivers-with-waste-management-software

[Accessed 19 Aug. 2025].

58


https://agilemanifesto.org/

Basestation, 2023b. Communication challenges in traditional fleet operations. [online] Available
at: https://www.thebasestation.com/post/enhancing-communication-between-dispatchers-
and-drivers-with-waste-management-software [Accessed 19 Aug. 2025].

British Computer Society (BCS), 2022. Code of Conduct: Guidance on Professional and Ethical
Practice. BCS.

Brown, R., Taylor, J. and Wilson, S., 2019. Operational challenges in last-mile delivery: Small
business perspectives. International Journal of Logistics Management, 30(2), pp.351—-368.

ConnectPointz, 2023. How manual data entry and human error are costing you money. [online]
Available at: https://www.connectpointz.com/blog/manual-data-entry-costing-you-money
[Accessed 19 Aug. 2025].

Fleetroot, 2023a. Automated dispatch for last-mile delivery savings. [online] Available at:
https://www.fleetroot.com/blog/how-does-automated-dispatch-help-save-last-mile-delivery-
cost/ [Accessed 19 Aug. 2025].

Fleetroot, 2023b. How does automated dispatch help save last-mile delivery cost? [online]
Available at: https://www.fleetroot.com/blog/how-does-automated-dispatch-help-save-last-
mile-delivery-cost/ [Accessed 19 Aug. 2025].

Forbes Technology Council, 2023. How restaurants can integrate technology for better delivery
operations. [online] Forbes. Available at: https://www.forbes.com [Accessed 11 Jul. 2025].

General Data Protection Regulation (GDPR), 2018. Regulation (EU) 2016/679.

Harri, D., 2022. The rise of food delivery and the challenges of manual management. Restaurant
Management Today, 12(4), pp.45-56.

Kumar, P. and Zhao, X., 2020. GPS-based real-time tracking in last-mile logistics: Benefits and
challenges. Journal of Transport and Supply Chain Management, 14(1), pp.1-12.

Lacity, M.C. and Willcocks, L.P., 2018. Robotic process automation: The next transformation
lever for shared services. Journal of Information Technology Teaching Cases, 8(1), pp.1-10.

Miller, K. and Chen, P., 2020. The impact of peak-hour demand on takeaway restaurant
operations. Journal of Hospitality & Tourism Research, 44(2), pp.245-260.

Oates, B.J., 2006. Researching Information Systems and Computing. Sage Publications.
Orderease, 2023a. The hidden costs of manual data entry in supply chain operations. [online]

Available at: https://www.orderease.com/community/costs-of-manual-data-entry-in-supply-
chain-operations [Accessed 19 Aug. 2025].

59


https://www.forbes.com/
https://www.orderease.com/community/costs-of-manual-data-entry-in-supply-chain-operations
https://www.orderease.com/community/costs-of-manual-data-entry-in-supply-chain-operations

Orderease, 2023b. Labour inefficiencies in manual workflows. [online] Available at:
https://www.orderease.com/community/costs-of-manual-data-entry-in-supply-chain-
operations [Accessed 19 Aug. 2025].

Park, J. and Lee, K., 2019. Impact of real-time driver tracking on customer satisfaction in the
food delivery sector. Journal of Service Research, 22(4), pp.456—468.

Samsara, 2023. What is route optimization? [online] Available at:
https://www.samsara.com/guides/what-is-route-optimization [Accessed 19 Aug. 2025].

SmartRoutes, 2023a. Manual vs automated dispatching. [online] Available at:
https://smartroutes.io/blogs/manual-vs-automated-dispatching/ [Accessed 19 Aug. 2025].

SmartRoutes, 2023b. Manual vs automated dispatching — errors in manual route planning.
[online] Available at: https://smartroutes.io/blogs/manual-vs-automated-dispatching/
[Accessed 19 Aug. 2025].

SmartRoutes, 2023c. Manual vs automated dispatching — long-term efficiency benefits. [online]
Available at: https://smartroutes.io/blogs/manual-vs-automated-dispatching/
[Accessed 19 Aug. 2025].

Smith, T. and Lee, R., 2021. Barriers to technology adoption in small takeaway businesses. Small
Business Economics, 57(2), pp.671-687.

Smith, T., 2021. Bridging the technology gap in restaurant delivery operations. Journal of
Business and Technology Integration, 12(1), pp.25-36.

Sommerville, 1., 2016. Software Engineering. 10th ed. Pearson.

Track-POD, 2023a. Smart ways to enhance fleet dispatching. [online] Available at:
https://www.track-pod.com/blog/advanced-dispatch-management-systems/
[Accessed 19 Aug. 2025].

Track-POD, 2023b. Advanced dispatch management systems and cost optimisation. [online]
Available at: https://www.track-pod.com/blog/advanced-dispatch-management-systems/
[Accessed 19 Aug. 2025].

Willcocks, L., Lacity, M. and Craig, A., 2015. The IT Function: Key Issues 2015-2016. London
School of Economics and Political Science.

Docker Inc., 2025. Docker: Empowering app development. [online] Available at:
https://www.docker.com [Accessed 11 Jul. 2025].

60


https://smartroutes.io/blogs/manual-vs-automated-dispatching/
https://www.track-pod.com/blog/advanced-dispatch-management-systems/

Dotenv, 2025. Dotenv — Loads environment variables from .env file. [online] Available at:
https://github.com/motdotla/dotenv [Accessed 11 Jul. 2025].

DrawSQL, 2025. DrawSQL: Database schema diagrams tool. [online] Available at:
https://drawsql.app [Accessed 19 Aug. 2025].

Expo, 2025. Expo Documentation. [online] Available at: https://docs.expo.dev
[Accessed 19 Aug. 2025].

Facebook Open Source, 2025. React Native — Create native apps for Android and iOS. [online]
Available at: https://reactnative.dev [Accessed 19 Aug. 2025].

Figma Inc., 2025. Figma — Design, prototype, and gather feedback. [online] Available at:
https://www.figma.com [Accessed 11 Jul. 2025].

Git, 2025. Git — Distributed version control. [online] Available at: https://git-scm.com
[Accessed 11 Jul. 2025].

GitHub, 2025. GitHub — Code hosting platform for collaboration. [online] Available at:
https://github.com [Accessed 11 Jul. 2025].

Google Developers, 2025. Google Maps Platform Documentation. [online] Available at:
https://developers.google.com/maps/documentation [Accessed 19 Aug. 2025].

Google Vision OCR, 2025. Google Vision Al. [online] Available at:
https://cloud.google.com/vision [Accessed 19 Aug. 2025].

Next.js, 2025. Next.js — The React framework. [online] Available at: https://nextjs.org
[Accessed 11 Jul. 2025].

Node.js Foundation, 2025. Node.js — JavaScript runtime. [online] Available at: https://nodejs.org
[Accessed 11 Jul. 2025].

Playwright, 2025. Playwright — End-to-end testing tool. [online] Available at:
https://playwright.dev [Accessed 11 Jul. 2025].

PostgreSQL Global Development Group, 2025. PostgreSQL Documentation. [online] Available at:
https://www.postgresql.org/docs [Accessed 19 Aug. 2025].

Postman Inc., 2025. Postman — APl development environment. [online] Available at:
https://www.postman.com [Accessed 11 Jul. 2025].

React.js, 2025. React — A JavaScript library for building user interfaces. [online] Available at:
https://reactjs.org [Accessed 11 Jul. 2025].

61


https://docs.expo.dev/
https://playwright.dev/
https://www.postgresql.org/docs
https://www.postman.com/
https://reactjs.org/

Supabase, 2025. Supabase: The Open Source Firebase Alternative. [online] Available at:
https://supabase.com/docs [Accessed 19 Aug. 2025].

Swagger, 2025. Swagger — API design and documentation tools. [online] Available at:
https://swagger.io [Accessed 11 Jul. 2025].

Tailwind Labs, 2025. Tailwind CSS — A utility-first CSS framework. [online] Available at:
https://tailwindcss.com [Accessed 11 Jul. 2025].

Twilio, 2025. Twilio SMS Authentication Documentation. [online] Available at:
https://www.twilio.com/docs [Accessed 19 Aug. 2025].

Vercel Inc., 2025. Vercel Deployment Platform. [online] Available at: https://vercel.com/docs
[Accessed 19 Aug. 2025].

Vitest, 2025. Vitest — A Vite-native test framework. [online] Available at: https://vitest.dev
[Accessed 11 Jul. 2025].

Zustand, 2025. Zustand: A small, fast and scalable bearbones state management solution.
[online] Available at: https://docs.pmnd.rs/zustand [Accessed 19 Aug. 2025].

Appendices

Figure 1 - WOrk TIMeEIINE Chart ...uueeeiiii ittt eectrrree e e e e e e e seaabree e e s e e s sennnnbreeeeeaeeenas 14
Figure 2 - Work Timeline Details TAbIE ........uvviiiiiieeeeeee e e e e 16
Figure 3 - Resources ReqUIred Table .......ccuuriieiieiiiiciieeeeee et eeeerrree e e e e e e e e eeeeeeeeas 16
Figure 4 - Middle of the Project - Trello Agile Dashboard..........ccccvvveieiiieicciiiee e, 17
Figure 5 - End of the project - Trello Agile Dashboard..........ccceeeeiiiiee i 18
Figure 6 - Information Architecture and SKEtChING ..........ccoveiiiiiieiiiie e 25
Figure 7 - System Design SKECLNING........coiviiiiiiiii e e e 26
FISUIE 8 - ER Diaram...uuuuuueeeiieiiiiiuiiiiiiiiii s ananan 27
Figure 9 - Database IMPIemMENTS ....cooviiii it e e e s e e e s ssaeeeesenes 29
Figure 10 - 10S & Android Developer ACCOUNT SELUP ....uvieeiiiiieiciiiieeee e e e ee e e e 31
Figure 11 - TWilio SIMS OTP SETUP .iocuvieeiiieeiiieeeieeerteeestee e sate e e siteeestae e s staeessaeessaeesnseeessseeesnseeennnes 31
Figure 12 - ESA Application production Build Dashboard.........ccccvuveeereiiiiiiiiiniieeeeeeeeeeiiireeeeeee e 32
Figure 13 - 10S APP STOIE LiSTING ..uuuuuuuuu s 34
Figure 14 - Manual vs Automated CalCulations ........ccuvveeeeiieiieiirreeeee e 36
Figure 15 - Manual Way - Work Simulation IMage .........cceeeeeiieiciiiiieeie et eereeee e 37
Figure 16 - Manual Delivery Fees Calculation.........occvuveeiieiieiieiciireeeee et eevrreeee e e 38
Figure 17 - Manual Work Time Tracking Table ... 39
Figure 18 - DeliveryGo Automated Way - Work Simulation IMage........ccccceeevvieeeiencieeeececiieeees 40



Figure 19 - DeliveryGo Automated Delivery Records & Details IMmage ......cccoevvveveeviieeeevniiiieeenn, 41

Figure 20 - DeliveryGo Delivery Details Start End Time RECOrdS ......euveieevieciureeeeeeeeeiicirreeeeeeeennn 42
Figure 21 - DeliveryGo Automated Daily Wages Calculation & Performance .........ccccccvvvveeeennnn. 43
Figure 22 - DeliveryGo Automated Time Tracking Table.........ooocevvreeiieeiiiiiiieeeee e 44
Figure 23 - DeliveryGo Delivery Fees Calculation Rates .........cccccvviieiieiiiiicciiieeee e 44
Figure 24 - Manual vs Automated Comparison Chart ..........cooececiireeeeeeeeeecirreeeee e eecirrreeeee e 45
Figure 25 - Manual vs Automated Comparison Table.......cccceoveiiiiiieie e 46
Figure 26 - Benefits of using Automated System over using manual Pen and Paper.................. 47
Figure 27 - Time ComparisOn Chart ...t e e e e e e esnrarree e e e e e 48
Figure 28 - Cost Comparison (Driver WagEeS) .....ccuuueiiircuiieeeiriieeeeesiteee s sevtee e sssaeeesesaseeaessnsneessnnns 49
Figure 29 - Error CompariSON Chart.......cceiiiiiiiiec ettt e e e e seeree e e e e e e e e reaeeeeeeeeas 50
Figure 30 - Locating Delivery Addresses Chart........cccovieeiiriiieeiiiiiiee e esieee e sseee e seenee e 51
Figure 31 - Summary Comparison Chart.........ccoccuieiiiiiiiie e e e e e enre e e e 52

63



	MSc Final Project Declaration
	Introduction
	Problem Statement
	Existing Solutions

	Aims & Objectives
	Investigation
	Practical Investigation
	Investigation Question

	Literature Review (Secondary Research)
	Responsible Technology - Ethical/Legal/Professional and Social Issues
	Timeline & Budget
	Resources Required
	Project Planning and Development - Project Methods
	Project Management (Agile Methodology)
	Tools & Technologies
	Requirements Gathering
	Information Architecture
	System Design
	ER Diagram
	React Native Application
	Database Implementation
	Apple Developer Account and Google Play Console
	Twilio SMS Authentication
	Expo EAS Build and Continuous Delivery
	Additional External Integrations
	Testing & Quality Assurance
	Deployment to iOS Store

	DeliveryGo Navigation Workflow
	Onboarding & Registration
	Dashboard & Delivery Management
	Reporting & Profile Management

	Primary Research – Methodology
	Manual Process Simulation – The Old Way
	DeliveryGo App Simulation – The New Way

	Results – Comparative framework (time, cost, errors, efficiency)
	Comparative metrics
	Time comparison
	Cost comparison
	Error comparison
	Efficiency and other factors
	Summary

	Discussion of Findings and Conclusion
	Accuracy of Wage Calculations
	Time Savings in Administrative Tasks
	Locating Delivery Addresses
	Broader Implications

	Future Recommendations & Risk Mitigation
	Future Recommendations
	Risk Mitigation

	Conclusion
	References
	Appendices

